This document was developed by the CSG Residential Retrofit Technical Committee.

Mark Hutchins, Chair, CSG QA Manager (National)
Andrea Carvalho, Technical Field Supervisor (NJ)
Tim Davis, ETO Senior Program Manager (OR)
Julie DeSeve, Residential Retrofit Product Director (National)
Peter Foster, LIPA Residential Field Manager (NY)
Adam Gifford, Program Manager (ME)
Rick Giles, RCS QA/QC Manager (MA)
Jon Lowrance, TVA Senior Technical Field Representative (TN)
Wade Morehead, Ameren Illinois Program Manager (IL)
Manuel Quintero, UniSource Existing Homes Program Field Inspector (AZ)
Patrick Roche, Operations Analyst, (National)
Wesley Soward, TVA Field Supervisor (TN)
Jeff Starkey, Columbia Gas HPwES Field Manager (OH)
Douglas Taylor, UniSource Existing Homes Program Field Inspector (AZ)
Jonathan Tillman, ETO Senior Program Manager (OR)
Table of Contents

1.0 INTRODUCTION
1.1 Purpose
1.2 Organization
1.3 Work Related Standards & Regulations
1.4 Program Quality Assurance

2.0 AIR SEALING
2.1 All Air Sealing
2.2 Attic Air Sealing
2.3 Wall Air Sealing
2.4 Crawl Space Air Sealing
2.5 Kneewall Attic Air Sealing
2.6 Floors Over Unconditioned Space or Ambient Conditions Air Sealing
2.7 Duct Sealing
2.8 Door Weather-stripping

3.0 INSULATION
3.1 All Insulation
3.2 Attic & Roof Slope Insulation
3.3 Wall Insulation
3.4 Crawlspace Insulation
3.5 Band Joist, Rim Joist, & Sill Insulation
3.6 Knee Wall Attic Insulation
3.7 Floors Over Unconditioned Spaces or Ambient Conditions Insulation
3.8 Duct Insulation

4.0 ATTIC, ROOF & CRAWLSPACE VENTING
4.1 General
4.2 Passive Attic Venting
4.3 Crawlspace Venting
5.0 WINDOW, DOOR & ATTIC ACCESS MEASURES
- 5.1 Attic Access Air Sealing & Insulation

6.0 VENTILATION SYSTEMS
- 6.1 General
- 6.2 Whole House Exhaust-only Systems
- 6.3 Whole House Supply Systems
- 6.4 Kitchens

7.0 MECHANICAL SYSTEMS
- 7.1 General
- 7.2 Heating and Cooling Systems
- 7.3 Domestic Hot Water Systems

APPENDIX A: Example Pictures
APPENDIX B MANUFACTURED HOMES
APPENDIX C: Spray-applied Polyurethane Foam
APPENDIX D: Technical Bulletin
APPENDIX E: Health and Safety
APPENDIX F: Mercury Spill Cleanup Procedure
APPENDIX G: Glossary
1.0 INTRODUCTION

The intent of the RePower weatherization program is to help homeowners and renters save energy and increase home comfort through the installation of cost-effective weatherization improvements. Only the Bainbridge Island and Bremerton, Washington areas shall be eligible for RePower services and incentives. In order to be considered a “complete measure” and qualify for an incentive, the installed measure must meet the installation specifications defined in this manual and the requirements detailed in the current program incentive brochure. The introduction of each section of this manual defines the requirements for achieving a complete measure.

The main purpose of weatherization measure installations is to prevent winter-time heat loss from conditioned space to unconditioned space or to outside the house. Weatherization measures shall be installed within the thermal enclosure or “shell” of homes. These areas are typically defined by the separation of a conditioned and unconditioned space of a home, or between a conditioned space and the outside of the house.

These specifications will not cover every situation. For questions, call the RePower team at 1.877.741.4340 for support.

1.1 Purpose

This manual provides CSG program participants (contractors, sponsors, CSG field staff and management) with the rules and requirements for acceptable materials and installation procedures for energy efficiency measures installed in existing homes. This guideline is to be used by CSG staff and program contractors as a guide to the proper use of air sealing, insulation, HVAC and instant savings measures materials and their proper installation in existing residential buildings. Its goal is for program participants to share a common understanding of how specified energy conservation measures are to be implemented for given residential applications. This includes an understanding of how materials are to be selected, which materials are approved and how they are to be installed.

These requirements are developed for instances where no national standards have been identified that were developed through an ANSI accredited organization following ANSI procedures. Where such ANSI standards do exist they should be brought to the attention of the program for resolution.

1.2 Organization

This manual is organized into ten sections. The first general section covers items that apply to all types of work performed by CSG employees and/or Contractors who work under the direction of CSG. Sections two through ten details the means and methods for doing residential energy improvement construction work and direct install measures.

Appendices are provided when added detail is required to cover one energy conservation measure adequately.
1.3 Work Related Standards & Regulations

All Contractors are required to perform their work in compliance with all applicable codes, regulations, laws, and standards.

- All Contractors are required to comply with their company’s health & safety specifications;
- All Contractors will maintain a copy of their Company Health and Safety Plan at the work site;
- Contractors will supply MSDS for products and materials used by their crews.

1.3.1 Personal Protection & Work Site Air Quality

1.3.1.1 CSG Employee Safety

CSG will maintain a copy of its Health and Safety Policy, and train all employees accordingly. The CSG health and safety program will include a written air quality management plan. Adherence to CSG worker health and safety and applicable OSHA standards are required for all jobs conducted by CSG or under contract to CSG.

1.3.1.2 Trade Ally Safety

Contractors will perform all work in a safe manner and utilize appropriate personal protection measures where required.

1.3.1.3 Occupant Safety

Any negative impact an installation may cause upon the health and safety of the occupants and the structural integrity of the building should be avoided to the extent that industry and CSG guidelines are breached. CSG and/or its subcontractors will evaluate existing conditions and communicate potential problems with the customer so that problems will be rectified before beginning work. This includes the identification of possible indoor air contaminants, severe moisture problems, and potential back-drafting of combustion appliances. The air quality management plan will be communicated to the occupants and the implementation of the plan will be agreed to in advance. The work will be coordinated with the occupants. All local, state and federal regulations governing potential hazardous materials or situations will be complied with.

1.3.2 Suspected Asbestos-Containing Materials

1.3.2.1 Definition

Asbestos is a mineral that was used in thousands of building products until 1973. This mineral, when broken down, forms microscopic razor sharp particles that when disturbed can float in the air and be inhaled. These razor sharp asbestos fibers are known to cause debilitating and sometimes fatal lung diseases.

1.3.2.2 Requirements

The presence of suspected non-rigid asbestos in the home disqualifies the home for all blower door tests, duct pressurization tests or any activity that will introduce asbestos particles into the living space. Non-rigid asbestos materials that can be a source of airborne asbestos if material can be disturbed by movement or air currents. Examples of non-rigid asbestos include but are not limited to: vermiculite, boiler and pipe insulation, ceiling coatings, etc. Blower door tests shall not be conducted if
asbestos is present or suspected. Vermiculite used as loose fill insulation should be presumed to contain asbestos.

Do not do work that will disturb vermiculite. See the EPA guidelines on vermiculite at http://www.epa.gov/asbestos/pubs/verm_questions.html.

Suspected rigid or fixed asbestos materials do not automatically disqualify a home from all weatherization work unless work causes the asbestos particles to become airborne by activities such as sawing, drilling, etc. Examples of rigid or fixed asbestos include but are not limited to: house siding, shingles, firestop boards, flue pipes, chimneys, etc. Under no circumstances is the Contractor permitted to saw, cut, break, tear, sand or drill materials containing suspected asbestos in the performance of work. Note: if any suspected asbestos containing siding shakes are damaged during removal they shall be handled and disposed of in accordance with all applicable regulations. Infill gaps with siding taken from inconspicuous location on house and provide non-asbestos-containing replacements matching size, bottom (straight or wavy), and texture (wood grain or straight).

Follow EPA guidelines, which say not to disturb the material. See customer brochure at http://www.epa.gov/asbestos/pubs/insulationbrochure2.pdf. Blower door tests will not be conducted if non-rigid asbestos is present or suspected. If potential hazards cannot be rectified, CSG may elect not to do the work.

Asbestos and vermiculite may be remediated to allow for a blower door and applicable retrofit work to proceed. To satisfy the remediation requirement, a certified asbestos abatement professional must have remediated the asbestos and/or vermiculite and have attested to its remediation in writing.

1.3.3 Knob-and-Tube Wiring

1.3.3.1 Definition

This pre 1950 style of wiring is characterized by two separated strands of insulated wire that run through ceramic tubes when passing through framing members and ceramic knobs when being attached to a framing member. When electricity flows through the wires there is resistance to the passage of the electrons. This resistance builds up heat that is dissipated to the surrounding space.

1.3.3.2 Requirements

When knob and tube wiring is determined to be present in a home, no insulation may be installed or air sealing work performed where the knob and tube is present until one of these two conditions has been met:

1. The knob and tube wiring is completely removed by a licensed electrician from the area to be insulated or air sealed.
2. A licensed electrician has confirmed in writing that the knob and tube wiring in the area to be insulated or air sealed has been permanently de-activated.

1.3.4 Mold

1.3.4.1 Definition
Mold is an organic substance that has been shown to cause adverse health effects in some individuals.

1.3.4.2 Requirements

When a mold-like substance is found to be present in an area of the home and it exceeds an area greater than 10 square feet, air sealing and insulation work may not be installed until one of the following conditions have been met:

1. A certified mold abatement professional has remediated the mold and has attested to its remediation in writing.
2. A certified mold abatement professional has determined that the substance is not mold and does not need to be remediated and has attested to this determination in writing.
3. If the area of suspected mold like substance is less than 10 square feet, the homeowner should be informed and directed to consult the EPA’s “A Brief Guide to Mold, Moisture, and Your Home”.

1.3.5 Lead Paint

1.3.5.1 Definition

Lead was a common ingredient in many paints up until its use was banned in 1978. Lead ingestion or inhalation has been shown to cause damage to the central nervous system. Children in particular are at a high risk for nervous system damage due to exposure to lead.

1.3.5.2 Requirements

In any home built before 1978 there is a possibility that lead paint was applied to some or all surfaces. If specified work in the home will require cutting into areas that are potentially covered with lead paint the following procedure should be followed:

1. The areas that are to be disturbed should be tested first with field test kits to determine if lead paint is present. Test kits should conform to EPA guidelines spelled out in Title 40: Protection of Environment, Subsection 745.88. The link is below.
2. If lead paint is determined to be present the area of lead paint that will be disturbed should be calculated and compared to the maximum amount of lead paint area that is allowed to be disturbed (6 sq/ft interior or 20 sq/ft exterior) before lead safe practices are required.
3. If the area to be disturbed exceeds the maximum allowable area permitted by the EPA’s Lead Safe Guidelines, then all Lead Safe Practices as outlined in Title 40: Protection of Environment, Subsection 745.85 shall be followed. Follow this link http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=2f538dfcc98fec4c62796eb1cdabc6d&rgn=div6&view=text&node=40:31.0.1.1.14.3&idno=40

1.3.6 Recessed Lights

1.3.6.1 Definition

Recessed lights are a type of fixture that projects through the thermal boundary into the attic space or cathedral roof slope. The holes in the thermal boundary created by these fixtures are a source of air leakage and degrade the overall thermal performance of the insulation of the attic or roof plane. Depending on the type of fixture, great care must be taken when sealing and insulating them.
1.3.6.2 Requirements

If a home is determined to have recessed lighting fixtures that penetrate the thermal envelope they should be air sealed and insulated using the following criteria and method:

1. First determine if the fixture is a non IC rated fixture, an IC rated fixture or an air tight IC rated fixture. If it is not possible to determine what type of fixture it is, then it should be assumed that it is a non-IC rated fixture.

2. If the fixture is non-IC rated then an air tight enclosure with a minimum clearance of 3” to any part of the fixture must be built from an air barrier material such as wall board or rigid foam insulation. Rigid foam insulation or other impermeable material can be used for the enclosure sides, but the top of the enclosure must be made from a non-insulating material with a high vapor permeability like wall board. Insulation can be placed against the side of the enclosure but must NOT be placed over the top.

3. If the fixture is IC rated but not airtight, then an air tight enclosure with a minimum clearance of 3” to any part of the fixture must be built from an air barrier material such as wall board or rigid foam insulation. Rigid foam insulation or other impermeable material can be used for the enclosure sides, but the top of the enclosure must be made from a non-insulating material with a high vapor permeability like wall board. This box can be insulated over.

4. If the fixture is an air tight IC rated can (ICAT) then it can be buried in insulation without being treated.

1.3.7 Heat Sources

1.3.7.1 Definition

A heat source is any penetration through the pressure boundary that has the potential to ignite combustible sealing materials. Examples of heat sources would be metal flue pipes, masonry chimney, cooking stove exhaust vents or heat lamps. Special non-combustible materials must always be used to air seal heat sources.

1.3.7.2 Requirements

Air sealing locations such as chimneys and flue pipes that have the potential to combust typical air sealing materials (such as foam, silicone caulk or card board) must be air sealed with fire-proof materials. The only approved materials for this application are sheet metal and high temperature sealants (ASTM E136 for oil or wood flues, 500F RTV silicone for gas flues). The sheet metal should be applied over any openings that cannot be bridged by the sealants and mechanically fastened in place with nails, screws or staples for a minimum distance of 3” from the heat source. Gaps and leakage points around the sheet metal should then be sealed using the appropriate high temperature sealant for a minimum distance of 3” from the heat source.

1.3.8 Combustion Appliance Zone Safety

Combustion appliance zone (CAZ) safety screening and/or testing is required before and after air sealing. This includes dense packing of exterior walls. All tests will be conducted using the BPI Building Analyst combustion testing procedures and all test results must be recorded in EnergyMeasure Home in the Combustion Safety section (or on the CSG Combustion Safety Test Form) The BPI Building Analyst
Analyst combustion safety procedures are located here:

1.3.9 Indoor Air Quality

In the classic sense, maintaining an acceptable level of indoor air quality is accomplished by ensuring that there is enough fresh air supplied to a home by some method to meet the needs of the occupants and to replace the air exhausted to remove indoor air pollutants (See CAZ safety). The quantity of fresh air required is generally calculated based on some combination of house volume and or occupancy. In some cases maintaining good indoor air quality requires addressing other issues such as asbestos, mold, lead paint, or radon and then adding mechanical ventilation at the calculated rate once these issues have been successfully remediated.

For existing homes that are being assessed for energy improvements, the BPI Building Airflow Standard should be applied.

1.3.10 Radon

1.3.10.1 Definition

Radon is a colorless, odorless gas that in high enough concentrations has been shown to cause lung cancer.

1.3.10.2 Requirements

CSG programs require that the homeowner be advised about the possible presence of radon, and encouraged to perform a radon concentration test after air sealing work is performed. More information about the health risks associated with Radon can be found at http://www.epa.gov/radon/index.html. See Appendix G for homeowner notification.

[Note: CSG radon notification policy is still under development, pending results of DOE/EPA field studies which are expected to be published in 2012.]

1.4 Program Quality Assurance

The requirements set forth in this document establish the basis of quality for work performed within the program. Participating contractors are responsible for adhering to these guidelines, and their work is subject to inspection by program staff to ensure that it complies. The details for inspection are available in the program’s Scoring Methodology for QAQC-Scoring System document.

Inspections and Inspection Process

After weatherization measures are installed, a quality control inspection may be required to verify compliance with RePower program specifications. The inspection is limited to measures or sections of measures that are reasonably visible from normal access locations. A reasonable effort will be made to see a representative section of the measure. If the installed weatherization measures do not meet these specifications, RePower will follow the RePower Problem Response Procedures which have been signed by all participating RePower trade allies. RePower guarantees neither energy savings nor performance of the installations under this program, nor does RePower assume responsibility for enforcing or determining compliance with codes and regulations, or their interpretation.
Waivers for Unusual Conditions
When unusual conditions exist, RePower may waive certain provisions of the weatherization specifications, or may substitute a different standard or method. The purpose of the waiver is to identify unusual conditions before work begins. Such waivers require pre-approval by RePower; call 1-877-714-4340 for more information.

Although RePower will work with both the customer and contractor, it is the responsibility of the customer to see that any deficiencies are brought up to these specifications in order to qualify for incentives. For a complete summary of the quality control process or the problem response procedures visit our website, www.RePowerBainbridge.org or call 1-877-714-4340.

2.0 AIR SEALING

2.1 All Air Sealing

2.1.1 General

This section is incorporated into the manual to address the widely accepted view that air leakage can be linked directly or indirectly to the most prevalent building envelope performance and durability problems. The best way to ensure adequate thermal performance, comfort, and avoid moisture problems is to prevent air from uncontrollably flowing into and out of the occupied space through the building envelope.

Material shall be installed according to the applicable codes and shall meet the requirements of the RePower Program. Air sealing is meant to increase comfort and energy efficiency of the home without sacrificing indoor air quality and health issues. All weatherization measures have the potential to tighten a home. A house that falls below the RePower Minimum Ventilation Level (MVL) will require mechanical ventilation, as described in the MV section of this manual. All aspects of the measure described herein must follow the requirements of the Air Sealing specifications, in order to qualify for an air sealing incentive. The final air leakage test shall ensure that the final MVL is at a safe level.

The air sealing incentive requires verification through diagnostic testing; a pre- and post-test CFM50 is required.

2.1.1.1 Intent

This section of the manual is intended to define the quantitative and qualitative requirements for the products, materials, and workmanship for the air barrier “system” of the thermal envelope for the buildings that are receiving energy improvements. The goal of the air sealing work is to provide a continuous, structurally supported plane of materials to contain the indoor air (reduce exfiltration) and to reduce the amount of outdoor air from entering the building (reduce infiltration).

2.1.1.1 REQUIREMENTS

1. The air sealing materials shall be selected and installed in a manner that will accommodate normal building movements and wind and stack pressures.
2. Air sealing shall address all building assembly transitions, changes in substrate, perimeter and transition conditions, mechanical penetrations, and mechanical system components that are extensions of the building envelope into unconditioned spaces.

3. Contractors shall post the “Completed Measures Certificate” at the electrical box or other permanent location approved by homeowner as a record of work performed. Contractors are also encouraged to add their logo and phone number to the certificate. Contact the trade ally coordinator at 1.877.741.4340 to order certificates.

2.1.1.2 Objective

Obstruct airflow through leaks, penetrations and bypasses found in the attic, basement, living space, and exterior pressure boundaries as indicated by the blower door and air sealing guidelines, to cost-effectively and safely control air leakage.

2.1.1.2.1 REQUIREMENTS

1. The building envelope will incorporate a continuous air barrier system, as per the WSEC 2009.
2. The air barrier shall be installed in a manner that meets the Energy Code in the state in which it is installed.

2.1.1.3 Implementation

Continuity of the air barrier system shall be maintained at all intersections of the building assemblies. Seal each component of the air barrier system to the adjoining air barrier system component. All air sealing work shall be terminated with a sealed connection to the adjoining air barrier system component.

Instrumented blower door and pressure diagnostics will be used to locate air leakage paths and seal leaks in a dwelling. A fully instrumented blower door will be used in accordance with manufacturer's instructions and CSG specifications.

The air sealing technician will seal leaks in the following areas, in the following order of priority:

1. The attic plane must be sealed as thoroughly as possible. See "Scoring Methodology" document for the list of tasks that will be considered part of thoroughly sealing the attic plane. If some areas are inaccessible, strategic dense-pack and/or foam insulation should be considered to reduce air leakage.
2. The walls and or ceiling separating the attached garage from the living space must be sealed.
3. Basement, crawlspace or other low leaks in the building as detailed in the "Scoring Methodology" document.
4. Other significant leaks in the sidewalls or framing transitions as outlined in "Scoring Methodology" document.
5. Penetrations and gaps in mechanical system components where they pass outside of the conditioned space. (See Heating and Cooling Systems)

2.1.2 Locations & Use

2.1.2.1 General
The following are generic requirements that apply to all air sealing material choices:

1. The choice of caulking and sealant materials for specific locations and uses will be governed by the cost-effectiveness guidelines and procedures described in this document and the air sealing checklist. The proper caulk will be matched to the location where it is applied. Consideration will be given to durability, paint compatibility, adherence, color, toxicity, flammability, etc.

2. Siliconized acrylics will generally only be used in interior locations or where paint compatibility is important. When used in visible areas, customer must approve the application, and see a sample before continuing. Clear acrylics, due to their shiny appearance, must be used only where appropriate, and should be approved by the customer prior to use in visible areas. Clear acrylics should be avoided if possible due to greater shrinkage.

3. Pure silicone will generally be used in exterior applications, unless paint compatibility is needed. Pure silicone will be used anywhere that sealants are needed between wood and metal, wood and concrete, or other materials that expand and contract at different rates as moisture and temperature vary, or where greater flexibility is needed.

4. Caulking will be performed on the interior of the dwelling for general air leakage and to prevent moisture penetration into wall cavities.

5. Caulking will be performed on the exterior of the dwelling to prevent bulk moisture from entering the envelope of the building and to seal areas of air leakage.

6. Dimensional limits:
 a. Siliconized acrylic shall not be used in openings or cracks over 3/16" without a backer, and generally should not be used in openings or cracks more than 3/8".
 b. Pure silicone shall not be used in openings or cracks over 3/8" without a backer, and generally should not be used in openings or cracks more than 1/2".

7. One-part and two-part foam:
 a. Foam shall not be used to span gaps or openings more than 1½" without a backer material.
 b. Foam sealant will not be used where exposed to sunlight or other ultraviolet sources. It will not be used near any heat-producing device.

2.1.3 Sealant & Blocking

2.1.3.1 General

The selected sealant and blocking materials must be suitable for the working surfaces to which it is applied and able to maintain a durable seal.

2.1.3.2 Material Requirements

2.1.3.2.1 Caulking

All caulking materials must be rated for a minimum 20-year life. Caulking used around chimneys shall be rated for use against heat sources. Caulk used against gas flues or chimneys shall meet ASTM C290. Caulk used against solid fuel or oil appliance vent flues or chimneys shall meet ASTM E136. Siliconized acrylic caulks must be paintable (“Silicone” refers to 100% silicone caulk, clear or pigmented—not acrylic)

2.1.3.2.2 One-part polyurethane foam sealants

Approved zero-CFC products include the following:

1. Pur-fil
2. Insta-foam or equivalent

2.1.3.2.3 TWO-PART SPRAY-APPLIED POLYURETHANE FOAM (SPF - SEE APPENDIX C)

All SPF materials must meet ICC ES AC 377 for the application.
1. Open-cell polyurethane foam (0.5pcf)
2. Medium-density closed-cell spray-applied polyurethane foam (2.0pcf)
3. Refer to Appendix C for CSG-approved methods for correct, safe installation of spray foam.

2.1.3.2.4 "RCD #6" MASTIC FIBROUS ADHESIVE SEALANT OR EQUIVALENT

2.1.3.2.5 BLOCKERS & BACKERS

1. Plywood
2. Foam board
3. Foil bubble-wrap or similar (to block large bypasses)
4. Flashing materials (required for damming and to bridge gaps at chimneys and flues)
5. Wallboard
6. Glass or mineral fiber insulation as a backer for other sealants
7. Backer rod (foam rope) as a backer for other sealants
8. 6-mil (0.150 mm) polyethylene sheet
9. Cellulose or fiber glass insulation in dense-pack application
10. Housewrap such as “Tyvek” or similar

2.1.3.3 Installation Requirements

2.1.3.3.1 CAULKS

Before applying caulking remove any lose dust, dirt, or debris from the area to be sealed. Ensure that the area the caulk will be applied to is dry. Read and follow any additional instructions cited in the manufacturer’s specifications.

2.1.3.3.2 1-PART FOAM

1-part foams can have surface preparation requirements for best adhesion based on conditions. Manufacturer’s installation instructions should be reviewed before applying.

2.1.3.3.3 2-PART SPRAY FOAM

See Appendix C.

2.1.3.3.4 WATER-BASED DUCT MASTIC

Duct mastic can be applied as an air sealant. It can be applied with either a glove or a paint brush. Whichever method is chosen, it is necessary to apply a thick coat of the mastic to avoid cracking and failure. Surfaces to be applied should be cleaned of loose dust, dirt, and debris.

2.1.3.3.5 BACKER MATERIALS

Backer Materials will fall into two general categories: Rigid and non-rigid. Rigid backers inserted into joist or stud bays may be held in place by friction and permanently secured by the adhesion of 1-part foam or caulk. Rigid insulation that seals drop soffits, large mechanical chases, etc will need to be fastened in place using either nails or screws. Metal flashing can be held in place with box nails or screws. Non rigid barriers (foil-faced bubble wrap, polyethylene, etc.) can be secured using ½ inch staples every 4-6 inches. Rolled batts or mineral wool will need to be stuffed tightly into openings to ensure they stay where intended. Rigid foam board insulation that will be exposed to finished spaces
must be covered with a thermal barrier. Rigid foam board insulation that will be exposed to an accessible area that is used for storage or for the maintenance of mechanicals must be covered with a thermal barrier.

2.1.4 Measurement of Air Sealing Areas

The following areas will be measured to the nearest six inches and reported as square feet:

1. Attic flats
2. Knee walls
3. Exterior walls
4. Basement/crawl space overheads

The following areas will be measured to the nearest foot and reported as linear feet:

1. Knee wall transitions
2. Overhang transitions
3. Rim and band joists
4. Baseboards

The following measures will be counted up and reported as units:

1. Pull-down stairs
2. Whole house fans
3. Exterior doors
4. Windows

2.1.5 Pre-Installation Requirements

2.1.5.1 Safety & Mechanical Check

The assessor or technician will perform a general safety and mechanical check of the premises which will include:

1. Dryers shall be properly vented in accordance with WSEC Section 1502
2. Other appliances properly vented to outside the building envelope in accordance with manufacturer’s specifications.
3. Any indicators of moisture problems, such as cracked, stained plaster, fungal growth, or occupant report of such.
4. The presence of knob and tube wiring.
5. The presence of asbestos-like materials.

No air sealing will be done in the event the above conditions are not investigated and corrected if necessary. Mechanical ventilation may be offered as a measure to mitigate moisture loads in the building.

2.1.5.2 Combustion Safety Pre-Test

The air sealing technician will perform a combustion safety test before air sealing, which will include:

1. Fireplaces, wood stoves, coal stoves, or other solid fuel appliances
2. Gas or propane cooking stoves
3. Gas, propane or oil water heaters
4. Gas, propane, or oil boilers, furnaces, and unit heaters

The combustion safety test will follow the BPI combustion test procedure:
1. Carbon monoxide levels in flues (undiluted)
2. Draft pressure checks of venting systems of space and water heaters
3. Zone pressures created by exhaust appliances
4. Zone pressures created by the duct system when the air handler is operating will not exceed 3 Pa to any room.

If there is any failure in the combustion safety pretest, NO air sealing will be performed until the problem has been remedied.

A functioning UL-listed Carbon Monoxide detector shall be installed according to manufacturer’s specifications whenever combustion appliances are present in the home, garage or other attached space and/or any time a supply or return duct travels through the garage.

Notwithstanding these prior inspections, work will not proceed if it will result in a dangerous or unhealthy situation.

2.1.5.3 Blower Door Pre-Test

Upon arrival, the air-sealing technician will prepare the house for a blower door pre-test and conduct the test according to the Minneapolis Blower Door Manual, Instructions for Blower Door Testing:
http://www.energyconservatory.com/download/bdmanual.pdf. Pressure differential readings will generally be used to detect substantial leakage paths and to determine the ratio of pressure differences across interior and exterior surfaces of a zone. Exception: if asbestos is present or suspected in the home, no blower door test will be conducted. Air sealing may still continue.

2.1.6 Installation Procedures

Air sealing technicians will generally strive to seal all cost-effective leakage in the building. Blower door readings will be taken at hourly intervals to determine continued cost-effectiveness. In general, it will not be considered cost-effective to achieve less than 62 CFM50 per person per hour. If such reductions have been achieved and all major areas of leakage have been addressed, then work will terminate.

Air sealing technicians will document and provide a listing of leaks sealed and any special materials used in the process on appropriate program forms. Conditions unfavorable to reductions will be identified and documented.

Air sealing technicians will perform blower door guided air sealing to ensure that the home is sealed above the acceptable airflow measurement, per BPI’s Building Airflow Standard for that home. Mechanical ventilation will need to be installed when required by BPI’s Building Airflow Standard.
Backers and blockers must be adequately fastened and supported to provide a durable substrate capable of bearing the weight of insulation and resisting wind and stack pressures.

2.1.7 Post-Installation Requirements

Air sealing technicians will conduct a blower door post-test after air sealing work is complete. The results of these measurements and the results of the initial measurements will be provided to CSG upon completion of work.

The combustion safety test will be repeated at the end of each day if house tightening work (i.e. dense packing more than 15% exterior surface area or air sealing), and documentation will be provided to CSG. If there is any failure in the post-test, CSG will be notified immediately and corrective action will be undertaken.

2.2 Attic Air Sealing

2.2.1 Definition

Attics are enclosed spaces outside of the intentionally conditioned living space. Air sealing measures for conditioned attic spaces are covered in the sections on walls and roof slopes.

2.2.2 General

To ensure that attic air sealing measures form an effective and durable seal, the following installation guidelines should be followed. The materials used in each descriptive application (See Locations and Use) will be chosen from the list of approved materials. Alternate materials may be used in each application as long as the substituted material has the same performance criteria (i.e. fireproof for fireproof). All applications must be able to support the weight of existing and proposed insulation and so will need to be supported appropriately. No backer material will exceed an unsupported distance of 24 inches. It is the responsibility of the installer to decide if additional support (less than 24 inches span) is required to keep the backer and insulation in place.

2.2.3 Locations and Use

Typical openings, cracks, gaps, and penetrations to be air sealed in attics include – but are not necessarily limited to - the following:

1. Interior partitions and exterior wall top plates
2. Along both sides of the plates, at butt joints, and at intersections
3. At wiring penetrations
4. Dropped ceilings and soffits
5. Junction boxes and wiring penetrations
6. Open joist bays in knee-wall attics
7. Hatches and pull-down stairs
8. Wet walls and plumbing chases/penetrations
9. Mechanical system components (also see Heating and Cooling Systems)
10. Chimneys and flues
11. Duct penetrations
12. Whole-house fan enclosures
13. Bathroom fans and recessed light fixtures

2.2.4 Material Requirements

2.2.4.1 Approved Backers

Backers are any material that is used to bridge openings that cannot be closed by a sealant. The following is the list of backers approved for use in attics.

1. **Fire-proof Backers:**
 a. Metal Flashing
 b. Mineral Wool
2. **Fire-resistant Backers:**
 a. Thermax
 b. Wallboard
 c. FSK rigid board
3. **Moisture-resistant Backers:**
 a. At least 6 mil Polyethylene
 b. Rigid Foam Board Insulation (extruded polystyrene)
 c. Foam Backer Rod
 d. Foil faced polyisocyanurate
4. **Other Backers: (may be used when fire and/or moisture resistance is not applicable)**
 a. House Wrap
 b. Radiant Bubble Wrap
 c. Plywood
 d. Insulated Structural Sheathing

2.2.4.2 Approved Sealants

Sealants are any material applied to attic surfaces or backers to form an air tight seal. The following is the list of sealants approved for use attics.

1. **Fire-Proof Sealants:**
 a. Non-combustible fire rated caulk meeting ASTM E 136
 b. Silicone high temperature RTV sealant on gas vents to 500 degrees Fahrenheit meeting ASTM C920

2. **Non-Fireproof Sealants:**
 a. 1-part urethane foam
 b. 1-part urethane fire block foam rated for sealing gaps in wood framing
 c. 2-part urethane foam kits
 d. Siliconized latex sealants meeting ASTM C834
 e. Silicone urethane and other elastomeric sealants meeting ASTM C920
 f. Water-based duct sealant meeting UL181A-M, UL181B-M

2.2.5 Installation Requirements

This section clearly defines what materials and methods are acceptable when sealing penetrations from the attic to the conditioned space.

2.2.5.1 Attic Top Plates
Where exterior and interior walls terminate in the attic, there is a junction between the wall board and the framing. This long thin gap between the wall board and the wall framing allows conditioned house air and attic air to exchange. To seal this gap, remove any existing insulation or debris from either side of the top plate where it meets the wall board. Apply a continuous bead of 1-part urethane foam between the wooden top plate of the wall and the wallboard. 2-part foam can also be used for this location. When 2-part foam is used, the entire top plate should be covered (i.e. only sheetrock and foam should be visible after the top plate has been sealed). Photo: Top Plates Sealed with 1-Part Foam

2.2.5.2 Dropped Ceiling and Soffits

This attic detail most commonly occurs above bathrooms and kitchens. Wall board is often excluded from areas above cabinets, bathtubs and/or showers which results in open spaces that are open to wall cavities. These open spaces should be sealed from the attic using a rigid supported material that is installed and sealed in line with the attic plane. If the dropped soffit or ceiling is above a bathroom or kitchen a moisture resistant backer should be used. The span should be bridged by the backer leaving enough overlap at all edges to mechanically attach the backer to the surrounding attic air barrier. The edges and seams should be sealed with foam. Photo: Dropped Soffit Sealed with XPS and 1-Part Foam.

2.2.5.3 Junction Boxes and Wire Penetrations

These two common details should be dealt with using two different materials. Junction boxes should be sealed using siliconized or silicone caulk. To ensure that the caulk bonds to the junction box, dust and debris should be brushed off. The openings in the box can be sealed with the caulk but care should be taken not to inject the caulk into the junction box. Wire penetrations should be sealed with foam. The nozzle of the foam gun should be inserted into the wire hole and foam injected until the foam backs out into the attic space.

2.2.5.4 Open Joist Bays in Knee Wall Attics

This area, sometimes referred to as the knee wall transition, is the space where the floor joists of an unconditioned knee wall attic pass under the knee wall and transition from unconditioned space to what should be conditioned space. To close this space, cut rigid foam board to the dimensions of the floor bays and rigid fit the foam board into the joist bay. The foam board should be inserted under the shoe plate of the knee walls inner (towards conditioned space) side. The inner face of the rigid board should align with the vertical plane of the wall board. Any gaps or seams should be sealed with either silicone caulk or 1-part urethane foam. Photo: Knee Wall Transition Sealed with XPS and 1-Part Foam.

2.2.5.5 Hatches

Hatches need to be made as air tight as possible. Hatches should be weather-stripped on all four sides and the corners mitered to fit together. The weather-stripping shall be stapled every four inches and within one inch of each corner. The seams between the weather-stripping and the finish will be caulked with a siliconized caulk. All seams in the finish will be sealed with a siliconized caulk. Any gap between the finish and the rough framing and the surrounding wall board will be sealed with 1-part urethane foam. If necessary, eye hooks will be installed on opposite sides with sufficient tension to compress the weather-stripping. Photo: Attic Hatch Weatherstripped.
2.2.5.6 Pull-down Staircases

Pull-down Staircases will be made air tight by constructing an air tight enclosure that fits over the top of the stairs. This enclosure must be large enough to allow the pull-down staircase to close without interference. All seams of this enclosure must be sealed with construction glue and foil tape. The existing surrounding framing of the attic deck must be complete and level enough to allow weather-stripping on the bottom of the enclosure or attached to the deck to engage all the way around the enclosure. There must be some type of fastening mechanism (eye hooks, Velcro, brackets, etc.) with sufficient tension to engage the weather-stripping on all four sides. This box must be constructed of materials light enough to be easily moved aside by the homeowner. Photo: Pull-down Stair Cover.

2.2.5.7 Chimney Flues & Vents

Closing the gap between heat sources and combustible materials requires the use of non-combustible materials. A clearance of three inches must be maintained between masonry chimneys or double wall metal vents and combustible materials, and six inches is required between single wall vents and combustible materials. The only approved material to span this gap is metal flashing. The metal flashing should be cut so that it spans the gap and leaves enough overlap to be attached with fasteners to surrounding framing. The flashing should be measured and cut so that when fastened in place the remaining gaps between the flashing and the venting and the flashing and the framing are ¼ inch or less and can be sealed using fireproof caulk. Other sealants can be used on the side of the sheet metal that is fastened to the framing. Photo: Chimney in Attic Sealed with High-Temp Caulk and Metal Flashing.

2.2.5.8 Bath Fans

The housings of most bath fans have many perforations and knock-outs. In addition to the openings in the housing, it is not uncommon for there to be sizable openings between the housing and the attic plane material (wall board, plaster, paneling, etc.). If the bath fan is a fan-light combination unit, it must be treated as a recessed light. If it does not have a light, the openings and perforations should be sealed with silicone caulk. The gap between the attic plane and the fan housing can be sealed with caulk if the gap is small enough or foam if the gap exceeds the maximum bead width of silicone caulk. Photo: Bath Fan Sealed with 1-Part Foam.

2.2.5.9 IC and Non-IC-rated Recessed Light Fixtures

Recessed light fixtures can be a significant source of air leakage between conditioned space and unconditioned attic spaces. To seal recessed lights, an air tight enclosure that maintains a clearance of at least three inches to any part of the fixture should be built around them. The box itself must be at least 3 inches higher than the surrounding insulation. The three inch clearance requirement includes any sealant that is applied to make the enclosure air tight. The sides of the box can be made of any type of rigid material. If the boxes are located in areas that are accessible (e.g., used for storage or containing mechanical equipment) then they must be either made of materials rated for exposure, or covered with an approved thermal barrier. If the fixture is not IC-rated, the top of the enclosure must be made of a material that has an R-value of 0.5 or less, and the top of the enclosure cannot be covered with insulation. If fixture is IC-rated the enclosure can be insulated over. In cold climates the top of the enclosure should be vapor permeable.
2.2.5.10 Open Chases

Material selection is the most critical aspect of sealing open attic chases. Backer materials that are used to seal chases must have sufficient rigidity to span the opening and support any insulation that will be placed upon it. Any span greater than 24 inches should be supported by framing members regardless of the material chosen. A moisture-resistant backer should be chosen when persistent exposure to moisture-laden air is deemed likely. Whatever material is chosen, it should be cut in a section large enough to span the chase and have enough overlap to be securely fastened to the surrounding framing. Any remaining gaps between the rigid material and the surrounding air barrier should be sealed with foam. Applicable fire codes apply for ignition barriers and thermal protection. Photo: Open Attic Chase Sealed with Sheet Metal, Duct Mastic and Acoustical Sealant.

2.2.5.11 Plumbing Penetrations (Wet Walls)

A wet wall is a wall that has plumbing pipes running vertically through it to unconditioned space. These walls are often framed using higher dimension framing (e.g. 2x6’s) or a double 2x4 stud wall. From the attic this wall is easy to locate. It is the one that the waste vent comes through. Usually, the top plate(s) of this wall have large openings that need to be bridged with a rigid, moisture resistant material and then sealed with foam. Photo: Plumbing Wet Wall Sealed with Fiberglass Batt Backer and 1-Part Foam.

2.2.5.12 Ceiling Height Level Changes

When ceilings change from one height to another a short wall is created with wall studs that run from conditioned space into the unconditioned space of the attic. In the case of pre-platform framing, this transition area in the wall stud bay will normally not have an air barrier installed at all. If the house was built with platform framing, there may be a wood blocker with unsealed edges. If there is no backer in the wall stud bay at the transition from conditioned to unconditioned space, one should be installed. This backer can be rigid foam insulation or a rolled insulation batt. Once the backer is installed it should either have the edges sealed with foam (in the case of rigid board) or be entirely covered with foam (in the case of the insulation batt backer). Photo: Ceiling Height Transition Wall Sealed with 2-Part Foam.

Table 2.2 Compatible Attic Air Sealing Materials
(Note: This table lists combinations of backers, fasteners, and blockers that when used together will satisfy the guideline. Other combinations are possible but must be approved by program staff before use.)

<table>
<thead>
<tr>
<th>Attic Locations</th>
<th>Backer</th>
<th>Fastener</th>
<th>Sealant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attic Top Plates</td>
<td>N/A</td>
<td>N/A</td>
<td>1 or 2 part foam</td>
<td>Platform construction</td>
</tr>
<tr>
<td>Attic Top Plates</td>
<td>Fiber Glass</td>
<td>Friction Fit</td>
<td>2-part foam</td>
<td></td>
</tr>
<tr>
<td>Attic Top Plates</td>
<td>XPS</td>
<td>Friction Fit</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Attic Top Plates</td>
<td>Foil Faced Wrap</td>
<td>1/2" staples</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Dropped Soffit</td>
<td>1/2" drywall</td>
<td>1" drywall screws</td>
<td>1 or 2 part foam or caulk</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Dropped Soffit</td>
<td>1.5" XPS</td>
<td>2"drywall</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropped Soffit</td>
<td>1" FSK</td>
<td>1" drywall screws</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Dropped Soffit</td>
<td>Foil Face Wrap</td>
<td>1/2 " staples</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Junction Boxes</td>
<td>N/A</td>
<td>N/A</td>
<td>Silicone Caulk</td>
<td>No foam in electrical boxes.</td>
</tr>
<tr>
<td>Wire Penetration</td>
<td>N/A</td>
<td>N/A</td>
<td>1-part foam</td>
<td></td>
</tr>
<tr>
<td>Kneewall transition</td>
<td>Fiber Glass</td>
<td>Friction Fit</td>
<td>2-part foam</td>
<td></td>
</tr>
<tr>
<td>Kneewall transition</td>
<td>XPS</td>
<td>Friction Fit</td>
<td>1-part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Kneewall transition</td>
<td>1' FSK</td>
<td>Friction Fit</td>
<td>1-part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Kneewall transition</td>
<td>Foil Face Wrap</td>
<td>1/2" staples</td>
<td>1-part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Chimney/Flue</td>
<td>Metal flashing</td>
<td>4d box nails or 1" drywall screws</td>
<td>High Temp Caulk</td>
<td></td>
</tr>
<tr>
<td>Chimney/Flue</td>
<td>Mineral Wool</td>
<td>Friction Fit</td>
<td>High Temp Caulk</td>
<td></td>
</tr>
<tr>
<td>Recessed Lights</td>
<td>Drywall/XPS</td>
<td>Tape</td>
<td>1-part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Open Chases</td>
<td>Drywall</td>
<td>1" drywall screws</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Open Chases</td>
<td>1.5" XPS</td>
<td>2" drywall screws</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Open Chases</td>
<td>1" FSK</td>
<td>1" drywall screws</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Open Chases</td>
<td>Foil Faced Wrap</td>
<td>1/2" staples</td>
<td>1 or 2 part foam</td>
<td>openings over spans larger than 24" should be supported</td>
</tr>
<tr>
<td>Wet Wall Top Plates</td>
<td>XPS</td>
<td>Friction Fit</td>
<td>1 or 2-part foam or caulk</td>
<td>backer must be moisture resistant</td>
</tr>
<tr>
<td>Wet Wall Top Plates</td>
<td>1" FSK</td>
<td>Friction Fit</td>
<td>1 or 2-part foam or caulk</td>
<td>backer must be moisture resistant</td>
</tr>
<tr>
<td>Wet Wall Top Plates</td>
<td>Foil Faced Wrap</td>
<td>1/2" staples</td>
<td>1 or 2-part foam or caulk</td>
<td>backer must be moisture resistant</td>
</tr>
</tbody>
</table>

2.3 Wall Air Sealing

2.3.1 General

The following are general requirements for wall air sealing:

- **Open Chases**: Use drywall or XPS on the sides, drywall on top. Taped until foamed. XPS must have thermal barrier if exposed.
- **Wet Wall Top Plates**: XPS, Friction Fit, 1 or 2-part foam or caulk, backer must be moisture resistant.
- **Open Chases**: 1.5" XPS, 2" drywall screws, 1 or 2-part foam.
1. Sealant materials shall be compatible with the wall assembly materials and should allow normal movement due to changes in temperature and humidity and air pressure variations.
2. Sealant materials shall be in a matching color to the substrate, or be paintable.
3. Sealants shall be installed in a manner that continues the function of the drainage plane. Do not install sealants in a manner that will hold water in the wall assembly.
4. When insulation is used as part of the air barrier system, the installation shall be an air tight material or meet the minimum density requirements for the material. (See Wall Insulation – Dense Pack Insulation.)
5. When membranes or films are used as air barrier system components, the entire perimeter of the material must be air sealed.
6. Windows, doors, and skylights should be integrated into the wall air barrier system. Seal the portion of the window, door, or skylight that is the air barrier component of the opening assembly to the air barrier component of the wall assembly, not the exterior siding or trim.
7. Mechanical penetrations shall be sealed to the air barrier component of the wall assembly, not the exterior siding or trim.

2.3.2 Locations & Use

All structural and mechanical penetrations should be air sealed. As appropriate, windows will be caulked along the full perimeter of the interior or exterior; including sill area, side stops, apron, and casings. As appropriate, doors will be caulked along the interior or exterior casings and door jambs/stops.

2.3.3 Material Requirements

Wall air sealing materials can be broken into three different materials: Backers, Sealants, and Dense Pack Insulations.

2.3.3.1 Approved Backers

Backers are materials used to bridge openings that cannot be closed by sealants. Following is the list of approved backers for use when air sealing walls.
1. Fireproof Backers:
 a. Metal Flashing
 b. Mineral Wool
2. Fire-resistant Backers:
 a. Wall Board
3. Moisture-permeable Backers:
 a. Wall Board (unpainted)
 b. Building Wrap
4. Other Backers:
 a. 6-mil Polyethylene
 b. Radiant Bubble Wrap
 c. Plywood/OSB
 d. Thermo-Ply
 e. Structural insulated sheathing
 f. Foam Backer Rod
2.3.3.2 **Approved Sealants**

Sealants are any material applied to the existing wall air barrier or the installed backer that forms an air tight seal. Following is the list of approved sealants for use when air sealing walls.

1. Fireproof Sealants:
 a. Non-combustible fire rated caulk meeting ASTM E 136
 b. Silicone high temp RTV on gas vents to 500 degrees Fahrenheit meeting ASTM C920

2. Non-Fireproof Sealants:
 a. 1-part urethane foam
 b. 1-part urethane fire block foam rated for sealing gaps in wood framing
 c. 2-part urethane foam kits
 d. Siliconized latex sealants meeting ASTM C834
 e. Silicone urethane and other elastomeric sealants meeting ASTM C920

2.3.3.3 **Dense Pack Insulations**

Fibrous insulations blown into an enclosed cavity at a specified density can greatly reduce air flow through the cavity and can be considered a form of air sealing. The two most widely used materials for this application are cellulose and glass wool (fiber glass). Other materials that can be dense packed are mineral wool and rock wool. These materials and their required installed density can be assessed and approved upon request by a contractor.

2.3.4 **Installation Requirements**

Air sealing the exterior walls can be broken into distinct parts. There is the combination of air sealing and insulation embodied in dense packing. There are heat sources that must be dealt with using fire proof materials and methods. There are seals made in areas that must resist moisture intrusion or allow vapor to escape when necessary. Finally, there are just penetrations through the walls that can be dealt with using “other” backers and non-specialized sealants.

2.3.4.1 **Dense Pack Insulation**

Walls with no existing insulation and empty cavities may be effectively air sealed by filling the wall cavity with densely packed fibrous insulations. (See [Wall Insulation – Dense Pack Insulation](#)).

2.3.4.2 **Heat Sources**

Any penetrations through exterior walls that are considered a heat source (stove pipes, range hoods etc) must be sealed using fireproof materials. If the gap between the existing wall air barrier and the venting system cannot be bridged by sealants alone, the gap may be bridged with metal flashing and sealed with furnace cement meeting ASTM E136. An alternative method is to stuff the gap with mineral wool as a backer (and insulation) and seal the mineral wool with a fire-rated furnace cement meeting ASTM E136. If the gap is small enough to bridge with sealant alone it should be sealed with a fire-rated furnace cement meeting ASTM E136.

2.3.4.3 **Moisture Resistant Seals**

Air sealing of exterior walls in some locations may require the use of a material that is a class I vapor retarder. Such locations could be Bathrooms, Kitchens or other areas of high moisture concentration.
When sealing out moisture is a consideration and the opening in the air barrier is too large to close with sealant, the opening should be sealed with one of the following: For interior sealing that is meant to retard vapor diffusion, XPS (rated for exposure or covered with a thermal barrier), wallboard painted with two layers of latex paint, and polyethylene are acceptable materials. For exterior sealing meant to stop bulk moisture intrusion metal flashing, building wrap, polyethylene, and XPS are acceptable materials. Once the backer is selected based on location, suitability, and appearance a compatible sealant must be matched to the location and finished appearance requirements. Acceptable interior sealants are siliconized latex sealants meeting ASTM C384, silicone caulk meeting ASTM C920, 1-part urethane foam, and duct mastic. Suitable exterior sealants are siliconized latex sealants meeting C384 or silicone caulk meeting ASTM C920.

2.3.4.4 Other Wall Penetrations

When sealing interior wall penetrations that are not heat sources or areas of high moisture concentrations the choice of backer on large openings should be chosen based on two criteria: Compatibility with the surrounding finish and fire resistance. Where visible or exposed to the living space, wallboard should be the material of choice as a backer due to its classification as a thermal barrier and its ability to be finished easily. Sealants in visible areas should be limited to either low sheen clear caulks or paintable caulks where applicable. 1-part foam can be used if it will then be covered by insulation or some form of ignition barrier.

2.3.4.5 Seal Baseboards

If a room is not carpeted, the baseboard can be sealed by caulking the seam between the baseboard molding and the floor and the baseboard molding and the drywall.

2.3.4.6 Window and Door Trim Sealed

The trim around windows and doors can be sealed using caulk at the seam between the window trim and the window frame and the seam between the window trim and the drywall.

2.3.4.7 Plumbing Penetrations Sealed

The area where plumbing pipes pass through walls can be sealed with caulk if the gap is less than ¼”, with 1-part foam if the gap is less than 1” or with an approved backer and 1-part foam or caulk if the gap is greater than 1”.

2.3.4.8 HVAC Boot to Subfloor/Drywall Sealed

The area where an HVAC supply or return boot penetrates the subfloor or drywall on a wall or ceiling can be sealed with duct mastic or caulk if the gap is less than ¼”. If the gap is greater than ¼” a backer must be used and then sealed with mastic.

2.3.4.9 Interior Sheathing Voids Repaired

Holes and gaps in the interior sheathing should be repaired with a material similar to the surrounding materials. These repairs should be discussed with the homeowner prior to beginning the repair to get approval of material and sealing methods.

2.3.4.10 Garage Door Weather Stripped & Swept
The door that separates occupied space from an attached garage will always be weather stripped. See Door Weather-stripping for approved methods and materials.

2.3.4.11 Exterior Doors Weather Stripped & Swept

Doors between conditioned space and unconditioned space may be weather stripped and have a door sweep installed if the customer requests specifically. See Door Weather-stripping for approved methods and materials.

<table>
<thead>
<tr>
<th>Table 2.3 Compatible Wall Air Sealing Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Note: This table lists combinations of backers, fasteners, and blockers that when used together will satisfy the guideline. Other combinations are possible but must be approved by program staff before use.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall Locations</th>
<th>Backer</th>
<th>Fastener</th>
<th>Sealant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Cavities</td>
<td>N/A</td>
<td>N/A</td>
<td>Cellulose</td>
<td>Dense pack cellulose to 3.5+ lbs/cuft.</td>
</tr>
<tr>
<td>Wall Cavities</td>
<td>N/A</td>
<td>N/A</td>
<td>Fiber Glass</td>
<td>Dense pack fiber glass to 2.2+ lbs/cu. ft.</td>
</tr>
<tr>
<td>Wall Cavities</td>
<td>N/A</td>
<td>N/A</td>
<td>Spray Foam</td>
<td>See Appendices B,C,D for installation specifications</td>
</tr>
<tr>
<td>Heat Sources</td>
<td>Metal</td>
<td>4d box nails</td>
<td>High Temp Caulk</td>
<td>Use compatible caulk and fuel combination.</td>
</tr>
<tr>
<td>Moisture</td>
<td>Drywall/Paint (two layers of latex)</td>
<td>1" drywall screws</td>
<td>see notes</td>
<td>if finished look use joint compound, if not use 1-part foam</td>
</tr>
<tr>
<td>Moisture</td>
<td>1.5" XPS</td>
<td>2" drywall screws</td>
<td>1-part foam or caulk</td>
<td>Not for finished areas</td>
</tr>
<tr>
<td>Moisture</td>
<td>6 mil polyethylene</td>
<td>1/2" staples</td>
<td>1-part foam or caulk</td>
<td>Not for finished areas. "Tu-Tuff" or similar thinner sheeting may be substituted.</td>
</tr>
<tr>
<td>Moisture</td>
<td>foil faced wrap</td>
<td>1/2" staples</td>
<td>1-part foam or caulk</td>
<td>Not for finished areas</td>
</tr>
<tr>
<td>Moisture</td>
<td>Metal</td>
<td>4d box nails</td>
<td>silicone caulk</td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>Building Wrap</td>
<td>1/2" staples</td>
<td>Sheathing Tape</td>
<td>sealant must be protected from exterior exposure immediately</td>
</tr>
<tr>
<td>Moisture</td>
<td>Rigid Insulation</td>
<td>Screws</td>
<td>Sheathing Tape</td>
<td>sealant must be protected from exterior exposure immediately</td>
</tr>
<tr>
<td>Moisture</td>
<td>polyethylene</td>
<td>1/2" staples</td>
<td>Sheathing Tape</td>
<td>sealant must be protected from exterior exposure immediately</td>
</tr>
</tbody>
</table>
2.4 Crawl Space Air Sealing

2.4.1 General

Crawl spaces are areas that are primarily below grade. Crawl Spaces are considered to be unconditioned spaces in this section of the manual.

2.4.2 Heat Sources

The following penetrations from the crawl space to the conditioned space are considered heat sources: Flue pipes from heating or DHW systems, flue pipes from solid fuel burning appliances, dryer vent pipe, or Kitchen exhaust vent pipe.

2.4.3 Locations and Use

The following crawl space locations must be airsealed:

1. Mechanical Chases and Other Large Openings
2. Rim Joists & Sills
3. Water Pipes
4. Dryer Vents
5. Plumbing Penetrations
6. Small openings between the crawl space and conditioned space

2.4.4 Materials Requirements

Crawl space air sealing materials will have different requirements based on the potential for high relative humidity in the space. Organic materials that support mold growth or materials that lose their rigidity after absorbing moisture should not be used. In addition to these requirements, foam insulation (rigid board or spray applied) that is used in a crawl space that is used for storage or has mechanicals will need to either be fire-resistant or have a thermal barrier. Foam insulation used in crawl spaces that are not used for storage, do not have mechanicals and have accesses smaller than 30” x 22” must have an ignition barrier.

2.4.4.1 Approved Backers

Materials that do not need an ignition barrier:

1. Thermax rigid foam board
2. Metal Flashing
3. Mineral Wool
4. Polyethylene
5. Foil Bubble Wrap

Materials that do need an ignition barrier:

1. Rigid Foam Board (except Thermax)
2.4.4.2 Approved Sealants

Sealants that do not need an ignition barrier:

1. 1-part foam
2. Siliconized latex sealants meeting ASTM C834
3. Silicone urethane sealants meeting ASTM C920
4. Water based duct mastic meeting UL181A, UL181B-M

2-part foam used as a sealant in the crawl space will require some form of fire protection depending on use and access.

2.4.5 Installation Requirements

The following installation instructions for crawl space air sealing locations detail the most common acceptable materials and practices.

2.4.5.1 Heat Sources

If the gap around heat sources is too great for sealant alone, the gap will be closed with metal flashing mechanically fastened to surrounding framing. If the appliance burns solid fuel or oil, the edges and gaps will be sealed using fire-rated caulk meeting ASTM E136. If the appliance burns natural gas or propane, the edges and seams will be sealed with high temperature silicone RTV meeting ASTM C920.

Photo: Chimney in Basement Sealed with Sheet Metal and High-Temp Caulk

2.4.5.2 Mechanical Chases and Other Large Openings

Large openings between the crawl space and the conditioned space or the exterior will need to be backed with a fire resistant material that does not support mold growth. For this reason, materials such as wall board or other paper based products are not allowed. Further, if the opening is between the basement and the conditioned space, then the material should also be a class 1 vapor retarder. Acceptable materials for closing large gaps would be Thermax, mineral wool, metal flashing or polyethylene. Materials such as XPS or other foil faced foam boards are acceptable if they will be either covered with insulation after installation or treated with a fire barrier. The rigid material should be cut to fit over the opening with at least an inch of overlap where possible. The backer material should be fastened into place with mechanical fasteners (screws, staples etc). Once the backer is secured firmly into place, the edges should be sealed using caulk or 1-part foam.

2.4.5.3 Rim Joists & Sills

Rim joists and sills may be sealed with one of several different methods. It can be:

1. Sealed with 2-part foam that is either rated for exposure in conditioned space or covered with a fire barrier after installation. In this application the foam can be extended from the subfloor to the junction of the foundation and the sill plate. In areas where termite pressure exists, code may require an inspection break between the foam and the bottom of the sill. If there is a termite inspection break, the seam between the foundation and the bottom of the sill must be sealed using silicone caulk.
2. The rim joist can be sealed by cutting blocks of rigid foam board to fit in the rim joist area and sealing the edges with caulk or 1-part foam. In this application the sill to foundation seam and
the seam between the two sill plates will also need to be caulked. Foam board must either be rated for exposure (e.g., Thermax) or be covered with an approved fire barrier. **Photo:** Rim Joist Sealed to Sill (and Insulated) with Foam Board and 1-Part Foam.

3. Caulk can be used to seal the seams in the framing where the rim joist and the sill and the rim joist and the floor joists meet. The rim joist can then be insulated with a section of unfaced glass fiber batt cut to fit. In this application the sill to foundation seam and the seam between the two sill plates will also need to be caulked.

2.4.5.4 Water Pipes

In spaces where pipes are at risk, the perimeter of the crawl space should be sealed tightly using one of the methods described in *Band Joist, Rim Joist, & Sill Insulation – Installation Requirements*. Air infiltration into crawl spaces is the main cause of pipes freezing. Crawl spaces, especially ones that will be pushed out of the conditioned space, should be thoroughly inspected for water pipes that could be frozen by wind-driven air infiltration. In these spaces, where pipes are at risk, the perimeter of the crawl space should be air sealed tightly. It should be noted that water pipes as far as five feet from the rim and band joist area can be frozen when temperatures are low enough and the air is driven into the space by high winds.

2.4.5.5 Dryer Vents

Dryer vents shall be treated as a heat source. If the gap between the dryer vent and the building surface is less than ¼ inch it can be sealed with high temperature silicone for gas vents meeting ASTM C920. If there is a gap too wide to be bridged by sealant alone, the gap should be sealed using either metal flashing or mineral wool. The edges and seams should then be sealed with high temperature silicone for gas vents meeting ASTM C920.

2.4.5.6 Plumbing Penetrations

If the gap between the pipe wall and the subfloor is less than ¼ inch the gap may be sealed using caulk. If the gap is between ¼ inch and 1 inch it can be sealed using 1-part foam. If the gap is greater than 1 inch it must be bridged using a moisture-resistant, fire-resistant material. Foam board, metal flashing, OSB, or plywood is an acceptable material for this application. (Foam board must either be rated for exposure (e.g., Thermax) or be covered with an approved fire barrier.) Once the gap is closed, the edges and seams should be sealed with either caulk or 1-part foam.

2.4.5.7 Small Openings Between the Crawl Space and Conditioned Spaces

Small openings should be sealed using a fire-rated sealant. This can be a 1-part foam product or a fire-rated caulk.

| Table 2.5 Compatible Crawlspace & Unconditioned Basement Air Sealing Materials |
| (Note: This table lists combinations of backers, fasteners, and blockers that when used together will satisfy the guideline. Other combinations are possible but must be approved by program staff before use.) |

<table>
<thead>
<tr>
<th>Crawlspace & Basement Locations</th>
<th>Backer</th>
<th>Fastener</th>
<th>Sealant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Sources</td>
<td>Metal</td>
<td>4d Box nails</td>
<td>High Temp</td>
<td>Use compatible sealant and fuel</td>
</tr>
<tr>
<td>Heat Sources</td>
<td>Flashing</td>
<td>Sealant</td>
<td>combination</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>1" Thermax</td>
<td>2" drywall screws</td>
<td>1 or 2 part foam or caulk</td>
<td>Use Thermax, not any other type of rigid foil faced board.</td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>Metal Flashing</td>
<td>4d box nails</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>Polyethylene</td>
<td>1/2" staples</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>1 or 1.5" XPS Insulations</td>
<td>2" drywall screws</td>
<td>1 or 2 part foam or caulk</td>
<td>Must have a fire barrier if not covered by insulation.</td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>Rigid Insulations</td>
<td>2" drywall screws</td>
<td>1 or 2 part foam or caulk</td>
<td>Any rigid board insulation other than Thermax must have fire barrier if exposed.</td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>1" FSK</td>
<td>2" drywall screws</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>Foil Face Wrap</td>
<td>1/2" staples</td>
<td>1 or 2 part foam or caulk</td>
<td></td>
</tr>
<tr>
<td>Large Openings</td>
<td></td>
<td></td>
<td>See Mech Chases.</td>
<td></td>
</tr>
<tr>
<td>Rim and Band</td>
<td>N/A</td>
<td>N/A</td>
<td>Spray Foam</td>
<td>Spray foam must either be rated for exposure or have an fire barrier.</td>
</tr>
<tr>
<td>Rim and Band</td>
<td>Rigid Insulations</td>
<td>Friction Fit</td>
<td>1-part foam or caulk</td>
<td>Rigid insulation must be rated for exposure or have a fire barrier.</td>
</tr>
<tr>
<td>Rim and Band</td>
<td>N/A</td>
<td>N/A</td>
<td>1-part foam or caulk</td>
<td>The framing junctions can be caulked or foamed and batt insulation added.</td>
</tr>
<tr>
<td>Pipe Penetration</td>
<td>Fiber Glass</td>
<td>Friction Fit</td>
<td>1-part foam</td>
<td>for gaps greater than 1"</td>
</tr>
<tr>
<td>Pipe Penetration</td>
<td>Foil Face Wrap</td>
<td>1/2" staples</td>
<td>1-part foam or caulk</td>
<td>for gaps greater than 1"</td>
</tr>
<tr>
<td>Pipe Penetration</td>
<td>N/A</td>
<td>N/A</td>
<td>1-part foam</td>
<td>for gaps between 1/4" and 1".</td>
</tr>
<tr>
<td>Pipe Penetration</td>
<td>N/A</td>
<td>N/A</td>
<td>caulk</td>
<td>for gaps 1/4" or less</td>
</tr>
<tr>
<td>Windows/Doors</td>
<td>Backer Rod</td>
<td>Friction Fit</td>
<td>caulk</td>
<td>for gaps more than 1/4"</td>
</tr>
<tr>
<td>Windows/Doors</td>
<td>N/A</td>
<td>N/A</td>
<td>caulk</td>
<td>for gaps less than 1/4"</td>
</tr>
<tr>
<td>Windows/Doors</td>
<td>N/A</td>
<td>N/A</td>
<td>1-part foam</td>
<td>gaps between 1/4" and 1". Care must be taken during installation to avoid over filling</td>
</tr>
<tr>
<td>Dryer Vent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5 Kneewall Attic Air Sealing

2.5.1 General

2.5.1.1 Roof vs. Wall & Floor

Weatherization Specifications Manual | RePower
A knee wall attic can be air sealed one of two ways. It can be sealed following the line of the roof rafters which will bring the knee wall attic space inside the conditioned area. The alternative would be to follow the knee wall itself from the sloped ceiling to the attic floor and then across the knee wall attic floor to the exterior wall top plate. This alternative would keep the knee wall attic as unconditioned attic space.

2.5.1.2 Vapor Permeable Air Barrier on Knee-walls

If the knee wall attic is air sealed as unconditioned attic space, this space will have to be ventilated according to state and local codes. Ventilating this space will make the knee wall insulation susceptible to wind washing. Therefore, a vapor permeable air barrier will need to be installed on the attic side of the knee wall to create a six sided wall cavity that will protect the installed insulation from wind washing.

2.5.2 Locations and Use

Knee wall or other side-attic areas, including rim joist areas under single-story shed roof, gambrel, garage, or other floor framing open into vented or unconditioned attic areas. If some areas are inaccessible, strategic dense-pack insulation should be considered to slow or stop leakage.

2.5.3 Material Requirements

If the attic has been sealed along the knee wall, and the attic floor and has been pushed outside of the conditioned space, refer to Attic Air Sealing – Material Requirements.

2.5.3.1 Air Barrier Aligns with Roof Rafters

This plane will need to be sealed with an air impermeable barrier. If the rafter bays are insulated with glass fiber or cellulose insulation, the following air barriers are acceptable:
1. Wallboard
2. Foam board (Must either be rated for exposure (e.g., Thermax) or be covered with an approved fire barrier.)
3. Plywood
4. OSB
5. Structural insulated sheathing
6. Polyethylene
7. Building wrap

If the rafter bays are insulated with spray foam the air barrier will need to be a fire barrier also. Approved materials in this situation would be:
1. Wallboard
2. Foam board (Must either be rated for exposure (e.g., Thermax) or be covered with an approved fire barrier.
3. 3/8 inch particle board

2.5.3.2 Air Barrier Aligns with Knee Wall and Attic Floor

If the air barrier aligns with the attic knee wall, the interior face of the knee wall will be the air barrier. The material used to seal the knee wall transition area will depend on access.
If the knee wall attic floor is not decked, the following materials are acceptable for sealing the opening between the floor joist cavities:

1. Rigid foam board
2. Wallboard
3. Framing lumber
4. Structural insulated sheathing
5. Foil-faced bubble wrap

2.5.4 Installation Requirements

2.5.4.1 Air Barrier Aligns with Roof Rafters

If the air barrier is going to align with the roof rafters and bring the knee wall attic inside the conditioned space, an air barrier material will need to be run from the top plate of the knee wall to the top plate of the exterior wall. This air barrier can be a rigid material like Thermax, wall board, or XPS (XPS will need a fire barrier) or it could be polyethylene or building wrap. The air barrier will have to be mechanically fastened with screws for rigid materials or staples for flexible barriers. All seams and edges will be sealed with 1-part foam on rigid materials, 3M 8086 or equivalent tape on polyethylene or building wrap tape on building wrap. See [Attic & Roof Slope Insulation – Installation Requirements](#) for proper venting and wind wash protection of insulation before sealing this space. **Photo:** Kneewall Attic Air Sealed Along Rafter Line (attic space within thermal/pressure boundary).

2.5.4.2 Air Barrier Aligns with Knee Wall & Attic Floor

If the air barrier aligns with the attic knee wall, the interior face of the knee wall will be the air barrier. The seam where the shoe plate of the knee wall sits on the subfloor should be sealed with caulk. If the knee wall attic floor is not decked, rigid foam board may be used to seal beneath the knee wall area. The foam board should be cut into sections and rigid fit under the interior edge of the shoe plate so that it aligns with the interior face of the knee wall. The seams between the foam board and the floor joists, ceiling, and subfloor should be sealed with 1-part foam or caulk. The foam board should be covered with either glass fiber or cellulose insulation for fire protection. If the attic knee wall floor is sheathed this area should be air sealed using dense pack insulation. In some cases it may be desirable to stop blown-in material from penetrating too far down a bay above the living space when dense packing. In this case a burlap “feedbag” may be used as an inflatable insert into the floor joist bay. This can be done by stuffing the bag through the drill hole while holding onto the opening of the feed bag. The fill tube can then be inserted into the feed bag and the feed bag “inflated” with blown in material until it fills the bay and forms a plug under the knee wall. The remainder of the bay can then be dense packed without fear of insulation entering areas where it is not intended. The top plate of the exterior wall and any penetrations through the attic knee wall floor should be treated as specified in [Attic Air Sealing – Installation Requirements](#) **Photo:** Kneewall Attic Diagram for Air Sealing Along Wall/Floor Framing (attic space outside thermal/pressure boundary).

Table 2.6 Compatible Kneewall Attic Air Sealing Materials

(Note: This table lists combinations of backers, fasteners, and blockers that when used together will satisfy the guideline. Other combinations are possible but must be approved by program staff before use.)
<table>
<thead>
<tr>
<th>Kneewall Attic Locations</th>
<th>Backer</th>
<th>Fastener</th>
<th>Sealant</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditioned Kneewall</td>
<td>1/2” drywall</td>
<td>1” drywall screws</td>
<td>1-part foam or caulk</td>
<td>Qualifies as a thermal barrier if used over foam insulation.</td>
</tr>
<tr>
<td>Conditioned Kneewall</td>
<td>1” Thermax</td>
<td>2” drywall screws</td>
<td>1-part foam or caulk</td>
<td>Qualifies as a thermal barrier if used over foam insulation.</td>
</tr>
<tr>
<td>Conditioned Kneewall</td>
<td>1/2” Plywood/OSB</td>
<td>1” drywall screws</td>
<td>1-part foam or caulk</td>
<td>Qualifies as a thermal barrier if used over foam insulation.</td>
</tr>
<tr>
<td>Conditioned Kneewall</td>
<td>Structural Insul Sheath</td>
<td>1” drywall screws</td>
<td>1-part foam or caulk</td>
<td>Qualifies as a thermal barrier if used over foam insulation.</td>
</tr>
<tr>
<td>Conditioned Kneewall</td>
<td>Polyethylene</td>
<td>1/2” staples</td>
<td>Sheathing Tape</td>
<td>Does not qualify as an ignition barrier</td>
</tr>
<tr>
<td>Conditioned Kneewall</td>
<td>Building Wrap</td>
<td>1/2” staples</td>
<td>Sheathing Tape</td>
<td>Does not qualify as an ignition barrier</td>
</tr>
<tr>
<td>Unconditioned Kneewall</td>
<td></td>
<td></td>
<td></td>
<td>The interior face of kneewall will be the air barrier. See "attic knee wall transition" for materials to be used in that area. Seal holes in kneewall to conditioned space using Wall Air Sealing table 2.2.7.4.</td>
</tr>
</tbody>
</table>

2.6 Floors Over Unconditioned Space or Ambient Conditions Air Sealing

2.6.1 Overhang Air Sealing

2.6.1.1 General

Overhangs are a type of floor over unconditioned space, usually outside. Because of its exposure to the exterior it is necessary that the insulation be protected from the weather as well as from air movement.

2.6.1.2 Access Considerations

Access to the overhang will determine the method used to seal the floor joist bay transition area. If access cannot be gained to seal by other means, dense pack should be used to slow air flow through this area.

2.6.1.3 Confined spaces

Use special safety measures when crawl spaces qualify as confined spaces.

2.6.1.4 Material Requirements

The following materials are acceptable for use in the following overhang configurations:

1. Accessible from interior:
 a. Backers:
 i. Foam board (Must either be rated for exposure (e.g., Thermax) or be covered with an approved ignition barrier.)
ii. Rolled batt
iii. Foil-faced bubble wrap
iv. Structural Insulated sheathing
v. Framing lumber
vi. Wallboard

b. Sealants:
 i. 1-part foam
 ii. 2-part foam (with ignition barrier)
 iii. Silicone caulk
 iv. Duct mastic

2. Accessed from exterior:
 a. Backers: Same as Overhang – Accessible From Interior – Backers above.
 b. Sealants: Same as Overhang - Accessible From Interior – Sealants above.

3. Exterior exposure:
 a. XPS
 b. 3/8 inch plywood
 c. 3/8 inch OSB

If access is from a basement or crawl space and sealing is done at the sill plate using rigid foam board other than Thermax it will be necessary to cover the rigid foam board with an ignition barrier unless otherwise allowed by local code.

2.6.1.5 Installation Requirements

Methods and materials for sealing overhangs will depend on existing conditions and access. For all overhangs in cold climates it will be necessary to inspect the floor joist bays to ensure that water pipes running through these areas will end up inside the conditioned area. Generally, this means that 75% of the insulation to be installed will be on the exterior side of the water pipes. If floor bays have ducts installed in them, then the ducts should be made air tight before pushing them outside with air sealing, especially before dense packing the joist bay. The following configurations will be sealed as specified here:

2.6.1.5.1 OVERHANG ACCESSIBLE FROM INTERIOR SPACE

Before sealing the transition area, the floor bay should be filled with insulation. The area where the floor joist crosses over the sill plate or exterior wall top plate should be sealed with an approved backer and the seams on all four sides of the backer sealed with 1-part foam or siliconized caulk. On the exterior, the seam between the sheathing on the bottom surface of the floor joist and the surrounding siding/sheathing should be sealed using a silicone caulk rated for exterior use.

2.6.1.5.2 EXTERIOR OVERHANG WITH SHEATHING REMOVED FOR ACCESS OR NO SHEATHING

Seal the transition area using an approved backer. Seal the seams around the backer using 1-part foam or silicone caulk. Fill the overhang floor bays with batt insulation. If there is enough clearance at the bottom of the floor joist and the bottom of the siding/sheathing consider adding a layer of rigid foam board to break the thermal bridge before replacing or installing the overhang sheathing. Seal the overhang sheathing to the surrounding siding or sheathing using silicone caulk.

2.6.1.5.3 NO ACCESS TO THE OVERHANG FLOOR BAYS
This area can be dense packed to slow air flow. A thorough inspection of the floor joist bays should be made to ensure that there are no water pipes, ducts or recessed fixtures in the area to be dense packed. To stop the unwanted flow of blown insulation down the floor bays and into the conditioned space, the burlap “feedbag” method can be used. (See Kneewall Attic Air Sealing – Installation Requirements.) The seam between the overhang sheathing and the exterior sheathing or siding should be sealed using silicone caulk.

2.6.2 Frame Floor Over Garage Air Sealing

2.6.2.1 Material Requirements

The following materials are acceptable for use in frame floor configurations when sealing the ends of bays exposed to outside air movement or large openings between the garage and conditioned space above:

1. Accessible from adjacent knee wall attic:
 a. Backers:
 i. Foam board (Must either be rated for exposure (e.g., Thermax) or be covered with an approved ignition barrier.)
 ii. Rolled batt
 iii. Foil-faced bubble wrap
 iv. Structural Insulated sheathing
 v. Framing lumber
 vi. Wallboard
 b. Sealants:
 i. 1-part foam
 ii. 2-part foam (with ignition barrier)
 iii. Silicone caulk
 iv. Duct mastic

2. Access from exterior:
 a. Backers: Same as Frame Floor Over Garage - Accessible from adjacent knee wall attic - Backers above.
 b. Sealants: Frame Floor Over Garage – Accessible from adjacent knee wall attic - Sealants above.

2.6.2.2 Installation Requirements

Methods and materials for sealing frame floors over garages will depend on existing conditions and access. For all frame floors in cold climates it will be necessary to inspect the floor joist bays to ensure that water pipes running through these areas will end up inside the conditioned area. Generally, this means that 75% of the insulation to be installed will be on the exterior side of the water pipes. If floor bays have ducts installed in them, then the ducts should be made air tight before pushing them outside with air sealing, especially before dense packing the joist bay. The following configurations will be sealed as specified here:

2.6.2.2.1 GARAGE CEILING NOT SHEATHED HEAT SOURCES

If the gap around heat sources is too great for sealant alone, the gap will be closed with metal flashing mechanically fastened to surrounding framing. If the appliance burns solid fuel or oil, the edges and
gaps will be sealed using fire-rated caulk meeting ASTM E136. If the appliance burns natural gas or propane, the edges and seams will be sealed with high temperature silicone RTV meeting ASTM C920.

2.6.2.2.2 MECHANICAL CHASES AND OTHER LARGE OPENINGS

Large openings between the garage and the conditioned space above will need to be backed with a fire resistant material. Acceptable materials for closing large gaps would be Thermax, plywood or OSB, drywall or structural insulated sheathing. Materials such as XPS or other foil faced foam boards are acceptable if they will be either covered with insulation after installation or treated with an ignition barrier. The rigid material should be cut to fit over the opening with at least an inch of overlap where possible. The backer material should be fastened into place with mechanical fasteners (screws, staples etc). Once the backer is secured firmly into place, the edges should be sealed using caulk or 1-part foam.

2.6.2.2.3 PLUMBING PENETRATIONS

If the gap between the pipe wall and the subfloor is less than ¼ inch the gap may be sealed using caulk. If the gap is between ¼ inch and 1 inch it can be sealed using 1-part foam. If the gap is greater than 1 inch it must be bridged using an approved backer. Foam board, metal flashing, OSB, or plywood is an acceptable material for this application. (Foam board must either be rated for exposure (e.g., Thermax) or be covered with an approved ignition barrier.) Once the gap is closed, the edges and seams should be sealed with either caulk or 1-part foam.

2.6.2.2.4 SMALL OPENINGS BETWEEN THE GARAGE AND CONDITIONED SPACES ABOVE

Small openings should be sealed using a fire-rated sealant. This can be a 1-part foam product or a fire-rated caulk.

2.6.2.2.5 RIM JOISTS & SILLS

The area where frame walls separate the garage from occupied space must be air sealed thoroughly to stop the exchange of air between the garage and the house. Rim joists and sills may be sealed with one of several different methods. It can be:

1. Sealed with 2-part foam that is either rated for exposure in conditioned space or covered with an ignition barrier after installation. In this application the foam can be extended from the subfloor to the top plate.
2. The rim joist can be sealed by cutting blocks of foam board to fit in the rim joist area and sealing the edges with caulk or 1-part foam. (Foam board must either be rated for exposure (e.g., Thermax) or be covered with an approved ignition barrier.)
3. Caulk can be used to seal the seams in the framing where the rim joist and the sill and the rim joist and the floor joists meet. The rim joist can then be insulated with a section of unfaced glass fiber batt cut to fit.

2.6.2.2.6 GARAGE CEILING SHEATHED

This area can be dense packed to slow air flow. A thorough inspection of the floor joist bays should be made to locate water pipes, ducts or heat sources in the area to be dense packed. To stop the unwanted flow of blown insulation down the floor bays and into the conditioned space, the burlap “feedbag” method can be used. (See Kneewall Attic Air Sealing – Installation Requirements.)

1. Water pipes in area to be dense packed: See Overhang Air Sealing – Installation Requirements.
2. Ducts located in area to be dense packed: See Overhang Air Sealing – Installation Requirements.
3. Heat Sources located in area to be dense packed: This heat source located in an enclosed space will need to have the bay that it is located in blocked with an approved backer with a clearance of at least three inches between the dam and the heat source. The backer will need to be made air tight with the surrounding materials to remove the chance that insulation dust under pressure could be forced within three inches of the heat source. If the heat source is close to one side of the bay and blown material in an adjacent bay is within three inches of the heat source, the adjacent bay must have a non-combustible insulation type (i.e. fiber glass or mineral wool) installed anywhere in that bay that is within three inches of the heat source.

2.7 Duct Sealing

2.7.1 General

Performance-based duct testing shall be performed only by technicians certified by Performance Tested Comfort Systems™ (PTCS). All duct testing shall be performed, or inspected for material and workmanship compliance by technicians certified as duct sealers, by PTCS. All aspects of the measure described herein must meet the requirements of the Performance-Based Duct Sealing specifications, unless physical barriers exist or this requirement is waived by RePower, in order to be considered a “complete measure” and qualify for a duct sealing incentive. Waivers require pre-approval by RePower; call 1.877.741.4340 for more information. If a portion of the basement is treated as conditioned space, it shall be included in testing procedures and volume calculations. Duct sealing performed on duct systems contained completely within the conditioned building envelope shall not qualify for the duct sealing incentive.

Duct sealing is one of the most cost effective energy upgrades. Unlike a house, there is no lower boundary of air tightness for a duct system. When sealing ducts, it makes the most sense to seal leaks close to the air handler where the pressure is greatest first and then work to the extremities of the system.

Measurements of duct leakage to outside and leakage reductions shall be performed to the requirements of PTCS. The PTCS Duct Sealing Certificate & NW Duct Sealing Form, with a completed Section E, shall be submitted together with the RePower incentive application form, and contractor’s invoice marked “paid in full” in order to receive an incentive for duct sealing. All leakage and reduction tests shall be duct leakage to exterior, and tested at 50pa of pressurization with reference to the exterior.

Duct leakage to outside shall be measured before sealing (pre-test) and after sealing (post-test). Reductions in duct leakage shall be measured as follows:

\[
\text{Pre-test CFM}_{50} - \text{Post-test CFM}_{50} = \text{Total Leakage Reduction CFM}_{50}
\]

If a duct system is unable to reach 50pa of pressure, the highest possible pressure shall be used when performing a pre-test or post-test.
In extreme cases, duct system leakage may be tested as a split system (testing supply leaks only). Both pre-test and post-test shall be conducted as a split system. When a system is tested as a split system, all accessible components of the supply and return ducting must be sealed according to DS 1.5; all accessible ducting in garages shall be sealed to prevent carbon monoxide and other pollutants from entering the duct system.

2.7.2 Locations and Use

For energy savings, only ducts in unconditioned space should be sealed. Ducts in enclosed crawl spaces and basements have proven to have marginal payback. Therefore it make the most sense to seal ducts that are located in ventilated spaces or ambient areas such as ventilated attics, open crawl spaces, garages, etc. Once the decision is made to seal a duct segment, all the openings in the duct system should be sealed starting closest to the system air handler and moving toward supply and return registers.

2.7.3 Materials Requirements

The following materials are approved for duct sealing:

1. Water based (latex) mastic conforming to UL-181A-P, UL-181A-M, UL-181A-H or UL-181B-M.
2. 2” roll mesh tape.
3. 100% silicone caulk (for use at component to component and component to plenum connections).

2.7.4 Installation Requirements

1. All joints, seams and connections of the duct system should be mechanically fastened with screws in at least three points. These joints, seams and connections should be sealed with duct mastic. Photo: Metal Ductwork Sealed with Mastic.
2. Any seam or hole in the duct system greater than 1/8” will be backed with mesh tape and sealed with duct mastic.
3. Inferior sections of duct—such as rusted, crushed, disconnected, or sections otherwise ineffective—shall be repaired or replaced prior to performing duct sealing. When there are large gaps in sheet metal or in duct connections, repairs shall be made using sheet metal, sheet metal screws, and mastic and mesh reinforcing tape.
4. Air handler access panels and seams that may need to be opened for service should be sealed with a UL181 rated tape.
5. Connections between the air handler and the cooling coil or hot water coil should be sealed with 100% silicone caulk. Photo: Air Handler Sealed with Silicone Caulk.
6. Flex duct connections should be made with hard duct connectors, held in place with a vinyl tension strap and the strap screwed into place. The connection between the inner liner and the hard duct it is connected to should be sealed with duct mastic.
7. To minimize sagging, ducts shall be supported with durable supports. Flexible ducting supports shall be listed as UL 181 approved, be at least 1½ inches wide and not restrict airflow.
possible, ducts shall be supported above the ground. When contact with the ground is unavoidable, closed cell rigid insulation shall be placed under the ducts.

8. Boot to floor, wall or ceiling connections for supplies and returns should be mechanically fastened to the surface or surrounding framing and sealed to the wallboard or subfloor with mastic.

9. If there is a filter door, it should have an operable door that closes securely and is reasonably tight.

10. Presence of insulation alone shall not be considered a barrier to accessibility. If continuous R-4 or higher insulation exists and is in good condition, it shall be in the same or better condition, upon completion of duct sealing, as it was prior to sealing the ducts.

11. All flexible duct connections, including connections to metal duct and flex duct splices, shall be inspected and tightly fastened using a compression strap on the inner liner and a compression strap on the outer lining, and using a tool designed for that purpose. A metal connector is required for all flex duct to flex duct connections. Flexible ducting shall be supported and comply with UL 181 requirements.

2.8 Door Weather-stripping

2.8.1 Location and Use

Weather-stripping of doors between conditioned and unconditioned (or semi-conditioned) space will be performed if the customer specifically requests a door be treated; this includes doors to unconditioned basements and attic spaces. Doors connecting the house to an attached garage will always be weather-stripped.

2.8.2 Material Requirements

2.8.2.1 Interior doors

"Q-lon" with either wood or steel carrier preferred, Q-lon strips allowed.

2.8.2.2 Exterior doors

Schlegel "Q-lon with carrier" (preferred), Porta Seal (I-D17), or equivalent.

2.8.2.3 Door sweeps

Door sweeps will be aluminum & vinyl, Dennis 905 (non-retracting), Pemko P307-AV (non-retracting) or equivalent.

2.8.2.4 Other

Weather-stripping will have a deflection range of at least 1/4". Weather-stripping will remain pliant in cold weather.

2.8.3 Installation Requirements

1. All weather-stripping will be permanently installed with fasteners (tacks, staples, brads, etc.) and will make positive contact between surfaces to prevent air leakage.

2. The weather-stripping will form an airtight seal when the door is closed. A small bead of caulk will be applied as necessary to prevent air leakage behind the weather-stripping.
3. The weather-stripping will not interfere with the smooth operation of the door.
4. One of two types of sweeps will be used on exterior doors. Which sweep will be used will depend on frequency of door usage. Doors that have high usage will be swept with a spring loaded sweep that will only engage and contact the floor when the door is closed. Low use doors can have either the spring loaded sweep or a non-retracting sweep that always makes contact with the floor.
5. After the weather-stripping is installed the door will be tested for ease of use. It should not be necessary to slam or exert excessive force on the door for the lock set to engage.
6. In addition to weather-stripping of doors and windows it may sometimes be necessary to install window sash locks, eye hooks, barrel bolts, etc. to make the installed weather stripping engage effectively.

3.0 INSULATION

3.1 All Insulation

3.1.1 General

The following applies to all insulation installed in the program:

1. Install attic, basement wall/ceiling, garage, and wall insulation upgrades according to program specifications, based on customer work order. Program specified levels of insulation must be installed.
2. All insulation upgrades in any location must conform to state and local codes.
3. Particular attention should be paid to exposed rigid foam board insulation. Rigid foam board insulation exposed to finished areas must either be rated for exposure or be covered with a thermal barrier. Rigid foam board insulation exposed to areas that are unfinished but accessible and are used for storage or maintenance must either be rated for exposure or have a thermal barrier applied.
4. Install strategic dense blown insulation in enclosed cavities, to control air leakage and increase insulation levels in attic, basement, and living space cavities.
5. Insulation upgrades will be specified by BPI Building Analyst certified technical assessors on a work order to the insulation subcontractor. It is the installing contractor’s responsibility to verify pre-installation requirements, measurements of insulated areas, and to install insulation products according to these specifications. In some cases the technical assessor may also be the insulation contractor. Any discrepancies should be brought to the attention of CSG’s field supervisor before work commences.
6. Installation will meet or exceed the standards set forth in the Criteria for the Installation of Energy Conservation Measures publicized by the National Bureau of Standards, including, but not limited to the guidelines set forth below.
7. Attic insulation shall be in full contact with the heated area of the home. Insulation shall be installed so that there is no air space between the insulation and the heated area of the home.
8. Insulation installed in attics, basements, garages, storage areas, or other areas where occupants go for routine maintenance or storage are considered human contact areas and shall be covered with a vapor permeable air barrier to limit occupant exposure to insulation fibers. Vertical and overhead surfaces containing fibrous insulation, in areas that are routinely...
accessed by building occupants, shall also be covered. All covering shall meet applicable codes. See glossary for acceptable vapor permeable air barrier requirements and materials.

9. Contractors shall post the “Completed Measures Certificate” at the electrical box or other permanent location approved by homeowner as a record of work performed. Contractors are also encouraged to add their logo and phone number to the certificate. Contact the trade ally coordinator at 1.877.741.4340 to order certificates.

3.1.2 Measurement of Areas

1. There are three locations from which components of a building can be measured: outside, in the living space, or in a buffer zone such as an attic or crawlspace. Measuring from the outside is always preferred. When the building floor plan and the area to be insulated, such as the attic floor plan, are the same, exterior dimensions should be used.

2. Interior measurements from the living space (preferable) or from inside the attic/kneewall space (second option if living space measurements are inconvenient or not accessible) will be used for attic areas that do not match the building floor plan, such as knee-walls, slopes, cathedral ceilings, kneewall floors and attic flat areas that are smaller than the building floor plan. When interior measurements are used, then an additional foot will be added to each dimension to compensate for exterior wall thickness.

3. When taking measurements, round up to the next half-foot. If the dimension is between 24’ 1” and 24’ 5”, you should round up to 24’ 6” (24.5) feet.

4. Changes in the methods used for measurements may be altered on a job-by-job basis, but must be specifically noted directly on the work order.

5. Measurements for wall insulation will be based on the gross wall area determined by the exterior perimeter multiplied by the interior wall height(s). One (1) extra foot of height will be added for band joist perimeter of floor system between two conditioned floors if the home is balloon framed. Basic windows and doors will be deducted from this area. Large sections which cannot be insulated, such as brick walls or fireplaces should be deducted and noted on insulation work orders.

6. If exterior dimensions cannot be taken for the building shell and interior dimensions are used, an additional two linear feet should be added to the perimeter before it is multiplied by the interior wall height.

3.1.3 Physical Properties

Insulation materials shall satisfy the requirements of the following national standards:

1. Batts - ASTM C 665
2. Loose fill (blown) cellulose - ASTM C 739
3. Loose fill (blown) fiber glass - ASTM C 764
4. Preformed polystyrene boards - ASTM C 578
5. Preformed polyurethane/polyisocyanurate boards - ASTM C 591

3.2 Attic & Roof Slope Insulation

Before insulating the attic, contractor will ensure that all bypasses at chimneys, soil stacks, perimeter walls, dropped ceilings and any other penetrations through the attic floor, or at attic transitions (i.e. changes in ceiling height) have been sealed. Pressure differential testing and visual inspections will be
used to ensure that all identifiable leakage has been addressed. Attic insulation shall not proceed until the area has been properly sealed and documentation is complete. Photo: Diagram of General Air Leakage Paths.

In attics with no pre-existing insulation, vapor retarders shall face the heated area of the building. Do not install new insulation with a vapor retarder on top of pre-existing insulation. There should only be one (1) vapor retarder in the assembly, and it should be in full contact with the heated ceiling. If existing attic insulation has a vapor retarder on top surface, slash with razor knife every six (6) inches before adding more insulation.

This section lists work and details that shall be performed before insulation is installed in attics, and specifications for how to install insulation and attic-related ventilation. All aspects of the measure described herein must meet the requirements of the Attic Insulation specifications—unless physical barriers exist or a requirement is waived by RePower in order to be considered a “complete measure” and qualify for an attic insulation incentive. Insulation shall be installed to inhibit heat loss between conditioned space and unconditioned spaces or to outside of the house.

To qualify for a RePower incentive, existing condition must be R-18 or less, and the attic must be insulated to R-38, or greater, unless otherwise specified herein.

3.2.1 Material Requirements

Loose blown, batt and rigid foam board insulations in attic spaces shall meet the appropriate requirements listed in All Insulation – Physical Properties. Where the brand name Thermax is specified for rigid foam board, a foam board that is rated for exposure to conditioned areas without a thermal barrier must be used. Otherwise the foam board must have a thermal barrier as specified in Section R316.4 of the WSEC 2009 or an ignition barrier as specified in Section 316.5.3 of the WSEC 2009. Area spray foams used in areas exposed to attic areas will also conform to Section R316.4 or R316.5.3 unless rated for exposure in conditioned spaces.

3.2.2 Installation Requirements

3.2.2.1 Baffles

Baffles will be installed in the following areas before insulation work begins:

1. The end of each ceiling joist bay that connects to a soffit. When soffit vents are to be installed or already exist, baffles will be installed in the space connected to the soffit vents in such a way that the top plate can be insulated. Where possible, a clearance of 1” from the top of the baffle to the underside of the roof sheathing will be provided in accordance with building code. Blocking will be permanent, mechanically fastened at sides and at bottom, and ensure the free movement of air through soffit vents into the attic, but not allow the air to "wind wash" the insulation and reduce its effectiveness. Wind washing is air movement through insulation which degrades insulation performance. The two most common areas where this occurs in an attic is at the eaves where ventilation air can pass through the edges of the insulation that abut the soffit area and on the back side of unprotected knee wall cavity insulation where, once again, ventilation air can move through wall cavity insulation. At the eaves, wind washing can be stopped by installing a rigid, air impermeable baffle that extends from the outer edge of the
exterior wall top plate to within two inches of the roof sheathing and is attached to the joists on either side of the cavity that is being protected. Once this baffle is either installed by rigid fit or fastened with staples or other mechanical fasteners spaced a maximum of four inches apart, any remaining gaps should be sealed with foam. It will be rigid enough to restrain loose-fill insulation from congesting the soffit vents at the eaves and obstructing ventilation. These baffles must extend above the final level of resulting insulation by at least four inches, so to be visible upon inspection. Pre-cut foam baffles are preferred. **Photo:** Insulation Wind Wash Baffle.

2. When specified, ventilation chutes will be installed in each slope cavity before insulating. These will allow air to flow from soffit or kneewall area into peak. Baffles will be mechanically fastened at sides and at bottom and will be carefully fitted with insulation packed in place at the bottom to prevent wind intrusion into or under insulation. **Photo:** Roof Line Venting Chute.

3. A continuous dam shall be installed along continuous soffit or eave vents. Where a continuous soffit vent is existing, baffles shall be installed somewhat equally spaced along the length of the soffit and allow enough NFA to satisfy the lower ventilation needs based on the standard set in section AT 1.3. Un-baffled bays that open to a soffit shall be blocked and sealed with a rigid moisture-resistant material so blown product is not able to enter soffit. **Baffle shall be installed far enough into the bay to reach the exterior side of the top plate.** If compression occurs because of a narrowing roofline, that is acceptable.

4. Permanent baffles will be installed around all recessed light fixtures. A minimum clearance of 3" will be maintained from the light fixture to the baffle. For further guidance on treating recessed lights, refer to **Work Related Standards & Regulations – Recessed Lights.**

5. Permanent baffles or dams will also be installed around all attic hatch covers in the following manner:
 a. They will not interfere with the opening of the hatch cover
 b. When the hatch is opened, they will prevent loose-fill insulation from falling into the living area.
 c. They will allow for easy access into attic for future inspection.
 d. This damming may be accomplished by using unfaced fiberglass batts of greater thickness than the installed insulation placed around the perimeter of the hatch, or by using a framing lumber fixed in place around the hatch.
 e. Insulation levels immediately surrounding the hatch will equal or exceed the R-value of the rest of the attic space.

3.2.2.2 Electric Radiant Strip Heating Elements

Blown-in or faced insulation will not be installed in contact with electric radiant strip heating elements. A minimum 3-inch thick un-faced mineral wool fiber batt will be installed first.

3.2.2.3 Doors & Hatchways

All doors and hatchways will be insulated to the same level as the surrounding surface using either rigid foam board, as specified, glued to the door or hatch with a compatible adhesive, attached with screws and 1" minimum washers, and weather stripped or fiberglass batts attached with twine. Rigid foam insulation material if used will need to be rated for exposure or covered by a thermal barrier that complies with ASTM E-84 recommendations. Mechanical fasteners will be used where necessary to
ensure tight closure of weather-stripping. (See Door Weather-stripping and Attic Access Air Sealing & Insulation)

3.2.2.4 Bathroom Fans

All bathroom fans will be dammed using unfaced batts and vented through the roof with insulated ductwork that terminates at roof or eave vent with a spring loaded damper. Bath fan venting shall not terminate anywhere inside the building shell. (e.g., duct shall not be laid into soffit area, or hung near gable vent.) All seams shall be sealed with an approved mastic sealant per the manufacturers’ recommendations and installation instructions. Fans shall be vented to nearest feasible location. If roof penetrations are prohibited, an alternative route will be devised. Exhaust ducts shall be installed to manufacturer’s specifications.

Vent ducts shall be securely attached at each joint and to the fan housing using mechanical fasteners, such as screws or metal clamp-type straps mechanically tightened. A securely tightened metal clamp will be acceptable in locations where space prohibits installation of sheet metal screws.

Existing, flexible plastic or metal vent ducts may remain if they are free of holes and kinks and are in otherwise good condition, provided they are vented to the exterior, free of gaps, and sealed to prevent exhaust air from entering back into the attic. Exhaust ducting shall be insulated to a minimum R-4 when required for code compliance.

3.2.2.5 Access Opening

Where entry to the attic via pre-existing hatchway of access panel is not possible, access to attic areas will be gained from the exterior through roof or gable vent openings. If this is not feasible, then the following procedures will be used for access openings:

1. **Surface Openings:** existing wallboard will be cut halfway on two studs (preferably through a closet). Opening will be closed with the same type of materials flush with existing wall material and taped and covered with one coat of joint compound.
2. **Plywood Openings:** existing wall will be cut between two studs. Opening will be closed with ¾" plywood (G1S/AC) with four (4) 1 1/2” x 8 flat head wood screws secured into studs, with heads countersunk or set flush with the plywood surface.
3. **Finished Openings:** existing ceilings will be cut. Opening will be headed off, and a 2 ½" casing will be installed around the rough opening. A 3/8" reveal will be allowed into opening to receive 1/2" plywood (G1S/AC) to complete opening. Plywood cover will be weather stripped and insulated. Casing will be mitered neatly.

3.2.2.6 Floored Attics

Cavities below decked storage areas above conditioned space shall be insulated to the highest practical level. When decked storage areas exceed five percent (5%) of the attic area, or 64 sq. ft., whichever is greater, they shall not be included in the calculation of the insulated areas for purposes of incentives, but shall be insulated. When decked storage areas are less than that limit, they may be included in the incentive area calculation. When unusual circumstances allow only for the cavity to be filled, contact RePower for incentive information.
Insulation shall be installed under the boards of floored attics. To fill the cavities, the boards can be lifted or holes can be drilled into them no more than four (4) feet apart. Insulation shall be installed using a fill tube. Joist cavities shall be tightly packed with insulation to a density of at least 3.5 lbs/cuft for cellulose or 2.2 lbs/cuft for fiber glass.

Areas with loose-fill insulation next to a floored attic shall be dammed to prevent insulation from falling onto the floored attic.

If homeowner so desires, when attic flooring is removed, it will be reinstalled and screwed securely back into place.

3.2.2.7 Open Blow Insulation

Loose fill blown in insulation will be installed according to manufacturer's specifications and recommended densities. All open blow attics will be installed to a level condition. **Photo: Loose Fill Attic Insulation Evenly Installed.** Insulation in open blown areas will have minimum material count per manufacturer’s instructions, as follows: thickness as specified in work order is average settled thickness. The insulation certificate shall be installed with contractor name, coverage area, installed thickness, minimum settled thickness, R-value, and bag count in attic facing the hatch.

Insulation depth markers with numbers at least one inch high shall be installed at least one for every 300 square feet throughout the attic space. The markers shall be fastened to the bottom of the attic joists or trusses and marked with the initial installed thickness. All depth markers shall face the attic hatch (WSEC 2009, Section N1101.4.1). A cellulose table and example is provided below.

<table>
<thead>
<tr>
<th>Inches on work order</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed R-value</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>32</td>
<td>35</td>
<td>39</td>
<td>42</td>
<td>46</td>
<td>49</td>
<td>53</td>
<td>56</td>
</tr>
</tbody>
</table>

Example: Work order specifies 12” cellulose open blow. R-value from chart is R-42. Attic area is 1000 s.f. Look at chart on product bag, if chart says that installed R-42 = 60 bags for 1,000 sq. ft, you need to install 60 bags. Minimum thickness specified on work order also applies.

1. Use depth charts provided by the manufacturer as a guide to specifying the number of inches to be installed. The installer will need the depth estimate to monitor insulation installation amounts. The depth and desired R-value should be checked periodically to ensure that the projected number of bags for the desired density are being installed.

2. In attics with existing fiberglass batts, the batt that is in the last joist bay on any gable end or other perimeter configuration that runs perpendicular to strapping ends, will be removed. This space will be filled to capacity with blown-in insulation. In addition, existing batts will be pulled back from front and rear soffit plates approximately 12” during baffling (see #1. above). This area will be insulated to specifications with blown-in insulation.

3. Damming: Blown in insulation will need to be contained using damming at the following areas and listed clearances: Chimneys & double wall flues (3”), single wall flues (6”), Recessed lights or bath fans with heat lamps or lights (3”). Attic hatches or pulldown stairs, whole house fans, mechanical access walkways, air conditioner drip pans, and storage areas (no clearance...
required). Dams shall be installed between insulated and uninsulated areas, such as garages, covered porches and along the upper edge where ceilings differ in height, to keep loose-fill insulation from falling over the edge. To build dams, use batt-type insulation laid flat, with an R-value equal to that in the attic. The batt shall be at least 14-1/2 inches wide. Other acceptable dam materials would be plywood or rigid foam board rated for exposure. **Photo: Attic Insulation Dammed Away From Chimney.**

4. Loose Blown Insulation on Slopes: Loose blown insulation will not be blown onto attic slopes with a pitch of more than 4:12. If loose blown insulation is blown on a slope that terminates at the end of a tray ceiling or other vertical wall open to the attic flat, the end of the sloped surface will be dammed with unfaced fiber glass of sufficient depth to maintain the specified R-value and the blown insulation will be installed up to the dam. **Placeholder for picture**

3.2.2.8 Installing Batt-Type Insulation

If batt-type insulation is installed, prepare the attic in the same way as for loose-fill insulation. Do not install vapor retarders over existing insulation. In attic areas where no insulation exists, batts with vapor retarders may be used. The vapor retarder shall be in contact with the ceiling.

Batts shall be cut to fit and placed tightly together with no gaps except those required for clearance around heat-producing fixtures. Where practical, place one (1) row of batts between the joists and another row of batts on top of the first row and at right angles to the joists. When lower ventilation exists, baffling is required to ensure effective R-value and prevent wind washing of insulation. See AT 1.4 for baffling requirements for fiberglass batt-type insulation installation.

3.2.2.9 3.2.2.7.2 Installing Foam Insulation

See Appendix C

3.2.2.10 Dense Pack Insulation

1. Blown in insulation in restricted or dense packed applications shall be 3.5 lbs/cu. ft. for cellulose and 2.2 lbs/cu. ft. for blown fiber that is manufactured for densepack installation.

2. Unless the area is sealed by other means, dense pack insulation will be installed to a minimum density of 3.5 lb./cu. ft for cellulose or 2.2 lbs/cu. ft. for blown fiber beneath all sections of the knee-wall in the joist cavity. The cavity will be sufficiently packed and sealed to make it extremely difficult to force a fist through, or detect any air movement with infrared (IR) scan and blower door.

3. Closed slopes will need to be ventilated according to state and local codes. If they can be ventilated satisfactorily, the top and bottom opening of the slope should be sealed with a firmly rolled unfaced batt. The ceiling bay should then be dense packed to the required density for the material used. Under no circumstances should an air permeable insulation be compressed against the roof sheathing and dense pack insulation blown between the air permeable insulation and the interior sheathing. If the slopes cannot be ventilated satisfactorily, see Appendix D for insulation installation requirements.

4. Open slopes with netting will be ventilated to state and local codes before the netting is installed. Once the netting is in place the ceiling bays should be dense packed to the required density for the material being used. Under no circumstances should an air permeable insulation
be compressed against the roof sheathing and dense pack insulation blown between the air permeable insulation and the interior sheathing.

3.2.2.11 Insulating Low-sloped or Flat roofs

Insulating low-sloped or flat roofs is technically difficult, and a wide gap exists between theoretical and field applications. Plans for retrofitting these roofs should be reviewed by the local building jurisdiction. Building permits and code compliance are the responsibility of the homeowner and contractor. A waiver is required for all low-sloped and flat roofs that are unable to achieve R-38, please contact RePower at 1.877.741.4340 for a waiver.

Exterior applications:

1. When installing rigid insulation on top of the roof sheathing, all ceiling cavities shall be insulated to highest possible R-value with insulation completely filling the ceiling cavity. The overall insulation assembly shall equal or exceed R-19.

Ceiling cavity applications:

1. Ceiling cavity insulation shall achieve a minimum of R-19, or fill cavity to its maximum depth.

Preparation

1. Recessed lights in insulated cavities shall be IC or ICT rated.
2. All plumbing vents, kitchen fans, bath fans, wood stoves and other fixtures shall vent to the outside of the new roof and be adequately flashed and sealed.

3.2.2.12 Platforms

An attic storage platform may be built at the customer's expense if they wish to raise the attic floor to allow for more room for insulation. The storage platform will have a 2x8 frame with band closure at ends nailed with 16d nails, 2x8 frame secured to existing joists at right angles with 8d common nails. Top will be floored with 1/2", CDX plywood will be secured using 1” drywall screws. Framing needs to be 16" on center, S-DRY #2 or better spruce or hemlock.

3.3 Wall Insulation

3.3.1 General

This section applies to exterior walls and buffered walls adjacent to unconditioned areas, such as garages. Closed walls shall be insulated to R-11, or the highest practical R-value. Insulation shall not be installed in wall cavities that serve as air ducts for heating or cooling. Cavities containing wall-mounted heaters shall not be insulated, unless there is blocking to prevent contact with insulation. For inspection purposes, the contractor may be required to open and re-plug selected entry holes at the discretion of RePower. All aspects of the measure described herein must meet the requirements of the Wall Insulation specifications, unless physical barriers exist or a requirement is waived by RePower in order to be considered a “complete measure” and qualify for a wall insulation incentive. Waivers require pre-approval by RePower; call 1.877.741.4340 for more information. Insulation shall be installed to prevent heat loss between conditioned space and unconditioned space or to outside the house.
To qualify for a RePower incentive, existing condition must be R-4, or less, and all cavities in all exterior walls must be insulated to R-11, or completely filled.

Combustion safety screening and/or testing is required before and after air sealing, which includes when greater than 25% of the exterior walls are densepacked. All test results must be recorded in the Combustion Safety section of EnergyMeasure Home (or on the CSG Combustion Safety Test Form, if applicable).

3.3.2 Materials Requirements

Installed insulation materials shall meet the appropriate requirements listed in All Insulation – Physical Properties. Caulks used on exterior siding will be rated for at least 20 years. Pure silicone will generally be used in exterior applications, unless paintability is needed. Pure silicone will be used anywhere that sealants are needed between wood and metal, wood and concrete, or other materials with differential expansion as moisture and temperature vary, or where greater flexibility is needed. Siliconized acrylics will generally only be used in interior locations or where paintability is important. Only backer materials that are water proof will be used in exterior wall applications. These would include 6 mil polyethylene, closed cell foam backer rod, metal flashing at heat sources or extruded polystyrene. Exterior drill and plug repair on painted wood surfaces will require insertion of a wooden plug and DAP exterior vinyl spackling or equivalent. Drill and plug applications through drywall or plaster will require the use of a Styrofoam plug and joint compound.

3.3.3 Pre-Installation Requirements

3.3.3.1 Measurement of Areas to Insulate

See All Insulation – Measurement of Areas.

3.3.3.2 Knob & Tube Wiring

Verify that knob and tube wiring has been replaced with approved wiring. Receive certification that existing knob and tube wiring is not live. (See Work Related Standards & Regulations – Knob-and-Tube Wiring for complete policy).

3.3.3.3 Moisture

Ensure that the moisture conditions detected in the structure during the course of the initial inspection are corrected prior to insulation of the sidewall cavities. This may be accomplished by one or more of the following techniques:

1. All cracks and holes will be thoroughly sealed through the interior wall surfaces in high moisture areas (kitchen, bathrooms, etc).
2. A vapor barrier may be installed, when possible, on the interior surface of the walls in bathrooms, kitchens, laundry rooms, and any other high moisture areas.
3. A vapor barrier floor covering, and possibly mechanical ventilation will be installed into high moisture crawlspace per specification.
4. Exterior structural flaws that admit rainwater into wall cavities will be corrected: repair gutter, downspout, drainage system, and seal gaps above door/window casings.
5. An adequate moisture control system will be installed in the house, including indoor mechanical ventilation (A.3) and passive attic ventilation (B.2.)

6. Clothes dryers will be vented to the outside.

7. The owners/occupants will be advised to lower their humidifier and/or to change lifestyle practice, which contribute significantly to high humidity.

3.3.3.4 Sidewall Openings

Ensure that all openings in sidewalls through which the insulation can escape to the interior or exterior of the building are blocked as follows:

1. Missing interior wall surfaces will be covered with a compatible material (i.e., drywall) and sealed into place. Generally this will be done at owner’s expense prior to beginning work, unless other arrangements are specified. If such conditions are found and not noted on work order, contact a CSG field supervisor before proceeding.

2. Missing or damaged exterior siding on homes with incomplete or no subsiding will be replaced/repaired. Generally this will be done at owner’s expense prior to beginning work, unless other arrangements are specified. If such conditions are found and not noted on work order, contact a CSG field supervisor before proceeding.

3. Block all openings in sidewalls through which the insulation may escape. Seal all wall cavities, which open into a basement or crawlspace with un-faced fiberglass batts before wall insulation is installed. Also check for pipes that enter kitchen cabinets and block them as needed.

4. Wall cavities with no top plate and/or open at the sill plate will be blocked and sealed with air impermeable barrier, such as rigid polystyrene insulation.

3.3.3.5 Avoiding Hazards

Ensure insulating cavities will neither allow insulation to escape nor present a hazard to the occupant, installer or the home's structural/mechanical integrity, i.e., heat ducts, recessed lights, vent fans, electrical service entrances, etc.

3.3.3.6 Interior & Exterior Inspections

Prior to starting a job, an interior and exterior inspection must be conducted to determine any potential problem areas. These problem areas must be identified and addressed prior to working on that area. Examples of some problem areas are recessed radiators, duct work in wall cavities, recessed bookshelves, stairways on exterior walls, loose or cracked plaster on walls, poor siding, etc. Check wall areas for valuables that should be removed prior to working on walls. The process and the work that is to be performed should be explained to the client. Any problem discovered should be discussed with a CSG field supervisor before commencing work.

For buildings with masonry exteriors, the contractor must confirm through visual observation that there is a barrier in the wall system that will prevent blown in insulation from coming into contact with the masonry. The purpose of this observation is to ensure that the insulation will not absorb moisture when the masonry gets wet. The visual observation can be with the naked eye or via boroscope, and should be done for each cavity that is being insulated. This barrier will typically be in the form of sheathing attached to a frame wall, but other systems that separate the insulation from the masonry are also acceptable.
3.3.3.7 Siding

Because the siding on a house is the most obvious indicator a homeowner will use to judge the quality of an insulation job, it is extremely important that the siding work is done properly. Contractors should always demonstrate to the homeowner how the siding will be removed and replaced before beginning work.

3.3.3.7.1 WOOD SHINGLE SIDING REMOVAL

1. Wood shingles should be removed with great care to minimize stray knife marks, splits, and broken shingles. A 45-degree bevel cut must be used when removing existing shingles. The bevel cut should be made at the butt of the shingle above, and should be as straight as possible. Use the butt of the shingle above as a guide.
2. Clapboards must also be removed using a 45-degree bevel cut. This cut must be made at the butt of the course above and should be as straight as possible. Do not follow the grain of the clapboard. The bevel cut should be as deep as possible to reduce the possibility of splits. A flat bar should be used to pry the clapboard away from the house far enough to remove the nails from the butt of the clapboard.
3. Sometimes when removing clapboards, it is necessary to make a vertical cut and remove a portion of a clapboard. When this is done the vertical cut must be perpendicular (straight up and down from the butt) to the courses of clapboards. This cut must be all the way through the clapboard before prying the clapboard from the house.

3.3.3.7.2 VINYL SIDING REMOVAL

1. Vinyl siding must be removed using a "zip tool" to unlock the siding. After the siding is unlocked, the nails in the top of the siding course below can be removed and the siding will come off the house.
2. Great care should be used when working around windows, doors, inside and outside corners to reduce the possibility of breaking or chipping the J-channels and corner posts.
3. When removing siding, workers' hands should be clean so that the siding does not have hand- and fingerprints on it.

3.3.3.7.3 ALUMINUM SIDING REMOVAL

1. In most cases, aluminum siding must be removed using a "zip tool". Once the siding is unlocked follow the procedures for vinyl siding removal above.
2. In some cases, aluminum siding cannot be zipped off. When this occurs, call this to the attention of the CSG field supervisor for further instructions. Do not proceed with removal of siding if it varies from the normal procedure until CSG approves a different technique.
3. To reduce the possibility of bending or denting aluminum siding, great care should be used when handling it, particularly in windy conditions.

3.3.3.7.4 ASBESTOS SIDING REMOVAL

1. Care must be taken not to disturb the siding material itself or cause dust or cracking, which may release asbestos fibers.
2. Single-nailed asbestos siding must be removed by removing the exposed nails at the butt of the shingle using "nippers" or straight diagonal cutters. By placing the cutter on the shingle and pressing against it, the nail head will be exposed and can be grabbed and removed. Once the nails are removed, the shingles will come off the house.
3. Double-nailed asbestos siding must be removed in the same manner as single-nailed. The only additional step is to remove the nails in the butt of the shingle above that go through the top of the shingle to be removed. The process for nail removal is the same as described above.
4. Blind-nailed asbestos siding presents a unique problem. Any exposed nails must be removed first, using the procedures previously mentioned. The blind nails covered by the butt of the shingle above must be cut-off before the shingle can be removed. To do this use a reciprocating saw (e.g., Sawzall) with a thin hacksaw blade, to cut the heads of the blind nails. Once this is done, the shingle can be removed. If nails cannot be cut without damaging the siding or causing dust, stop work and call a CSG field supervisor before proceeding.

3.3.3.7.5 ASPHALT SHINGLE REMOVAL

1. Use straight diagonal cutters to remove exposed nails by pushing on the shingle around the nail head with the cutter blades.
2. Remove the nails on the bottom of the shingles directly above the shingle to be removed.
3. Carefully lift the bottom of the top shingle and locate the nails that are holding on the shingle to be removed. Use a sharp chisel and a hammer to cut the heads off the nails.
4. Carefully remove the shingle and place to the side.

3.3.4 Installation Requirements

3.3.4.1 Dense Pack Insulation

Blown in insulation in restricted or dense packed applications shall be 3.5 lbs/cu. ft. for cellulose and 2.2 lbs/cu. ft. for blown fiber that is manufactured for densepack installation. The cavity will be sufficiently packed and sealed to make it extremely difficult to force a fist through, or detect any air movement with infrared (IR) scan and blower door.

3.3.4.2 Drill and Plug (D&P) Applications

All blown in wall insulation will be installed with minimum 2 1/8" holes. Locate entry holes in walls to permit complete filling of wall cavities. Be sure to use sharp drill bits designed to cleanly cut holes with no tear out or other surface damage, properly sized for the wooden plugs being used. Speed-bore bits should not be used for this application.

3.3.4.2.1 INTERIOR APPLICATIONS

1. Before beginning work on interior drill and plug applications the area to be worked on should be cleared of as much homeowner property as possible. Remaining large pieces of furniture etc should be covered with drop clothes and sealed tightly. The area to be drilled should be sealed tightly from the remainder of the house using polyethylene sheeting, extension poles and duct tape. When drilling interior walls the holes should be staggered horizontally to avoid drilling out the same row of lathe as this weakens the wall and can cause large sections to detach. It is recommended that two drills be used for the interior drill process. The first drill will be used to cut through the plaster and will be very dull. The second drill will be used on the same hole after the plaster has been cleared to cut cleanly through the lathe and minimize pulling and cracking.
2. An example of the drilled and plugged hole should be made in an inconspicuous place, and shown to the owner at the beginning of the job for approval.
3.3.4.2.2 EXTERIOR APPLICATIONS

1. When drilling holes through siding that cannot be removed, and that has no repeating reference marks, a line should be snapped (do not use waterproof cement chalk!) to keep the plugs level across the wall. Examples of this type of application are Texture 1-11, novelty siding, knotty pine siding, frieze boards, and any other sheathing type siding. Interior drill and plug applications would be attic stairway walls and exterior walls (when not done from the outside).
2. Holes should be drilled as neatly as possible through all siding and sheathing materials, including plaster and wallboard.
3. During the hole drilling process, cavities should be probed in FOUR directions (left, right, up, and down) to ensure stud and blocking locations are correctly identified and blind bays are not left un-insulated.
4. Do not leave holes in wall open overnight. Any holes must be plugged at the end of the day if work is not complete.

3.3.4.3 2-Hole Installation Method (Walls, Ceilings, Etc.)

1. A double-hole method preparation is mandatory for all drill and plug applications on exterior walls exceeding four (4) feet in height. See Installation Procedures below for requirements for hole preparation in all wall cavities.
2. Use of a fill tube to ensure consistent insulation coverage and density is required. Only one hole is required per cavity, if a fill tube is used, provided the tube is long enough to reach both ends of the cavity from the opening.
3. Use only equipment compatible with the insulation material used. Follow the manufacturer's recommendations for air pressure and density.
4. Keep a record of the number of bags used to insure the installed insulation conforms to the manufacturer's recommended coverage shown on the material label.
5. Using smoke devices to test dense-packing: To test density of installed insulation, dense pack one bay. Use the blower door to de-pressurize the house to 50 PA wrt outside and use a smoke puffer to generate smoke at the drill hole of the insulated cavity. If the smoke is drawn into the cavity, adjust the material and air settings on the insulation machine and re-blow the bay. Repeat the test until the smoke is not drawn into the cavity when the house is under pressure.

Photo: Smoke Testing Densepack.

3.3.5 Post-Installation Requirements

3.3.5.1 General

1. Prior to reinstalling siding all holes opened in a wall must be covered or closed with one of the following: 15# felt paper stapled in place, wood, cork, Styrofoam plugs.
2. Repairing drainage planes: Before replacing the siding the existing drainage plane should be tied back into. This can be done using 15# felt paper or building wrap (don’t use building wrap with cedar siding). Cut a four by four patch from the felt paper or wrap, slide the upper edge of the patch under the piece of siding above and staple into place over the plug at all four corners.
3. All types of siding must be reinstalled as close to its original condition as possible. One of the most important aspects of this procedure is to ensure that the siding is weather tight.
Damaged siding must be replaced or repaired as needed. Clapboards and wood shingles that are split or broken as a result of removal or installation must be replaced with materials that match the original. The new siding must be primed white (pre-primed in inclement weather) on the front, back and both ends.

4. It is not acceptable to patch siding with materials that are not intended for exterior use, (i.e. plastic wood, spackle, joint compound). Patching of small areas must be done using a paintable siliconized acrylic caulking compound.

3.3.5.2 Reinstallation of Wood Shingles

1. After installation, the shingle should be reinstalled by tapping the butt lightly making sure the bevel cut is closed completely. Re-nail the shingle with at least two (2) four penny galvanized finish nails through the butt of the shingle.

2. When replacing damaged shingles with new shingles, make a bevel cut on the new shingle and install it according to the above procedure. If the bevel cut does not match properly, siliconized acrylic caulking compound must be used to seal this area.

3.3.5.3 Reinstallation of Wood Clapboards

1. After insulating, the clapboards should be reinstalled by tapping the butt lightly, making sure the bevel cut is closed completely. Nail the clapboard with four penny galvanized finish nails through the butt of the clapboard. Clapboard-type siding shall be nailed at every wall stud or 16” OC. Any remaining nail holes must be filled with a paintable siliconized acrylic caulking compound and left flush with the clapboard.

2. When replacing damaged clapboards with new clapboards, do not simply cut the new clapboard. Remove the top of the clapboard that was originally cut including the nails through the butt of the clapboard above. Once this is done, install the entire new clapboard and nail in the butt of both the new clapboard and the clapboard above. Seal old nail holes as mentioned above.

3. Prime, the front, back, and both ends of the new clapboard. (In inclement weather, it should be pre-primed.)

3.3.5.4 Reinstallation of Vinyl Siding

1. Reinstall the panels that were removed. Lock the bottom of the panel that was removed, and nail the top of that panel in the nailing strip using roofing nails. Do not nail the panels tight; the nail must be just loose enough in the nailing slot to allow for expansion and contraction of the vinyl due to changes in weather.

2. Punch slots with a slot tool where nailing is required and no factory-installed slot is available.

3. Once this is completed, lock the butt of the panel above with the top of the panel that was removed.

4. Do not face nail vinyl siding.

3.3.5.5 Reinstallation of aluminum siding

1. Reinstall the panels that were removed. Lock the bottom of the panel that was removed, and nail the top of that panel in the nailing strip using aluminum roofing nails. Do not nail the
panels tight; the nail must be just loose enough in the nailing slot to allow for expansion and contraction of the aluminum due to changes in weather.
2. Punch slots with a slot tool where nailing is required and no factory-installed slot is available.
3. Once this is completed, lock the butt of the panel above with the top of the panel that was removed. If necessary, nail six penny galvanized finish nails through the weep holes to secure the panels.
4. Do not face nail aluminum siding.

3.3.5.6 Reinstallation of Asbestos Siding

1. Single-nailed asbestos siding can be put back in place and nailed through the existing holes. If the original siding nails are not used, use a galvanized five-penny box nail.
2. Double-nailed asbestos can be put back in place and nailed through the existing holes both in the course above and the butt of the shingle removed.
3. Blind-nailed asbestos siding must be put back in place and nailed through the existing holes in the same manner as double-nailed asbestos. The blind nails cannot be re-installed.

3.3.5.7 Reinstallation of Asphalt Siding

1. Single-nailed asphalt siding can be put back in place and nailed through the existing holes.
2. Double-nailed asphalt can be put back in place and nailed through the existing holes both in the course above and the butt of the shingle removed.
3. Blind-nailed asphalt siding must be put back in place and nailed through the existing holes in the same manner as double-nailed asbestos. The blind nails cannot be re-installed.

3.3.5.8 Repair of Drill and Plug (D&P) Applications

3.3.5.8.1 EXTERIOR APPLICATIONS

Exterior D&P applications on painted surfaces must be completed in the following manner:
1. After installation, insert the plug so it is slightly (1/16") recessed.
2. Apply one coat of an exterior rated sealer (DAP exterior vinyl spackling or equivalent) and use a putty knife to bring sealant close to flush to the exterior siding.
3. This procedure also applies to drill and plug applications on windowsills, frieze boards, and entrances.

Exterior drill and plug applications on stained surfaces must be completed in the following manner:
1. After installation, insert a plug so that it is flush with the existing siding and the wood grains of the plug and the sheathing are in the same direction.
2. A small bead of caulk should be applied around the radius of the plug where it will contact the surrounding sheathing.
3. The plug should be installed by placing a block of wood over the plug and tapping it until the plug is flush with the siding.

3.3.5.8.2 INTERIOR APPLICATIONS

Interior drill and plug applications must be completed in the following manner:
1. After installation, insert a plug so that it is slightly (1/16") recessed. Apply one or two coats of patching material flush to the existing surface. Z-brick adhesive (or equivalent) is recommended since it has less tendency to shrink and crack.

2. Some examples of this application would be exterior walls (not done from the outside), stairway walls, garage ceilings, and slopes.

3.3.5.8.3 WORK REVIEW

Walk the entire job to ensure that all aspects of the job are completed. Verify the following:

1. All the siding is repaired and/or reinstalled.
2. Paint touch-up is complete.
3. Shutters are reinstalled.
4. Yard, porches, driveways, and all exterior areas are swept clean.
5. All work areas in the basement/house are swept or vacuumed clean, and all work related debris has been removed from the site.
6. Job documentation is complete.

3.4 Crawlspace Insulation

Crawl spaces will be inspected for signs of standing water or existing moisture problems. Any existing moisture issues will be remediated before working to bring the crawl space inside the conditioned area. If standing water is found in the crawlspace, it shall be drained before the floor can be insulated. A sump pump may be needed for some situations. Draining the water is the responsibility of the owner.

All scrap materials, especially wood and cardboard, shall be removed from the crawlspace. The underfloor shall be checked for water leaks and wood decay before and after work occurs. Both the owner and RePower shall be notified of the condition. Corrective measures shall be assessed and the trade contractor shall provide the owner with a written estimate of the repairs. Weatherization measures shall not be installed in the compromised areas until they have been corrected.

3.4.1 Locations and Use

Basements and crawlspace may be insulated in one of two locations: on the interior side of foundation walls, or in the ceiling that defines the floor above. The best choice for the location of the thermal boundary is the foundation wall and rim joist area. The final decision where the thermal boundary will be placed will be decided based on the following conditions:

1. If the mechanical systems are located in the basement or crawl space then the air barrier and insulation should be placed at the foundation wall and rim joist areas.

2. If the crawl space or basement has poor air quality due to moisture that cannot be remediated, then the air barrier and insulation should be placed on the basement ceiling. If the thermal boundary is located at the basement ceiling, mechanical systems, venting systems and any vented appliance must be thoroughly sealed and insulated in accordance with WAC 51-51-1508 in the case of ducts and well insulated in the case of hydronic piping. In cold climates, the rim joist area should be well sealed to ensure that air infiltration cannot freeze the pipes.

3. Uninsulated walls between conditioned and unconditioned spaces in the underfloor area shall be sealed for air leakage, insulated to a minimum of R-15 and create a continuous thermal
boundary. When no wall exists, one shall be constructed and an effective air and thermal barrier shall be installed.

3.4.2 Material Requirements

Installed insulation must meet specification in All Insulation – Physical Properties. Installed 2-part spray foam must meet specifications from Appendix C.

3.4.3 Installation Requirements

3.4.3.1 Underfloor Treatment

3.4.3.1.1 BATT INSULATION

1. If faced insulation is specified, vapor barrier facing will be installed facing the heated space.
2. The insulation will be pushed into the floor bay far enough to ensure that the insulation contacts the sub-floor. The entire floor bay will be filled with insulation. Care should be taken not to compress the insulation more than necessary to achieve contact.
3. Areas above and below pipes, ducts and around cross braces will be insulated. Insulation will be cut and fit neatly around all obstructions. Pipes and ducts will not be thermally isolated from the house.
4. Insulation will not be left exposed in areas of heavy use (house-wrap will be specified to cover insulation).
5. Crawl spaces exposed to the outdoors (unconditioned, ventilated crawl space) will have house wrap or equivalent installed beneath insulation for wind wash protection.
6. Insulation shall be supported so that it does not block or restrict crawl space ventilation. Insulation may be compressed, if necessary, to meet this requirement.

3.4.3.1.2 FLOOR INSULATION SUPPORT MATERIALS

Use one of the following materials to support floor insulation:

- **Wood lath**—Wood lath shall be a minimum of 1/4 x 1 inch.
- **Twine**—Twine shall be non-stretching polypropylene or polyester.
- **Wire**—Wire shall be stainless steel, copper or an equivalent material of similar corrosion resistance, with a minimum diameter of 0.040 inch (Size 18 AWG). Self-supporting wire hangers are not acceptable.

Hand stapling is not a durable fastening technique and will not qualify a project for a program incentive.

Fasteners for lath, twine or wire may be hot-dipped galvanized nails, screws or corrosion-resistant staples that are at least 18-gauge and long enough to penetrate wood at least 5/8 inch.
3.4.3.1.3 SPACING REQUIREMENTS FOR SUPPORT SYSTEMS

1. Staples shall be driven with a power-actuated stapler to achieve at least 5/8 inch penetration.
2. The maximum spacing for support systems is as follows:

<table>
<thead>
<tr>
<th>Spans</th>
<th>Maximum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 inches or less</td>
<td>18 inches apart</td>
</tr>
<tr>
<td>48 inches</td>
<td>12 inches apart</td>
</tr>
<tr>
<td>60 inches</td>
<td>8 inches apart</td>
</tr>
<tr>
<td>72 inches</td>
<td>6 inches apart</td>
</tr>
</tbody>
</table>

1. Wood lath shall not be used for spans greater than 48 inches. Splicing is not allowed to meet this requirement. Wood of thicker dimension may be used for wider spans.
2. Support systems for spans of over 72 inches require prior approval by RePower: call 1.877.741.4340 for more information.
3. Batt-type insulation shall be supported no more than 3 inches from the ends. This support shall be parallel to the end of the batt. Small pieces of insulation shall be supported.
4. Support systems shall be fastened to the underside of floor joists. Joists may be skipped; however, the maximum spacing shall not exceed 12 inches. The maximum span of skipped joists shall not exceed 48 inches.

3.4.3.1.4 DENSE PACK INSULATION

1. All openings between the basement/crawlspace and the conditioned space must be sealed thoroughly.
2. A fiber reinforced membrane must be securely stapled to the floor joist at 2” intervals.
3. The membrane should be slit every 6 feet and a fill tube used to dense pack the insulation to the required density for the material used.
4. The slits should be sealed using 3M 8086 tape or equivalent.
5. The area and cavity depth should be compared to the number of bags installed to verify density.
6. Crawl space exposed to the outdoors (unconditioned, ventilated crawl space) will have house wrap or equivalent installed beneath insulation for wind wash protection.

3.4.3.1.5 TWO-PART SPRAY FOAM

Follow procedures in Appendix C. When installing foam insulation products, manufacturer’s name, product identification and information to determine the end-use shall be left with the homeowner and presented to a RePower representative for review during the quality control process.

3.4.3.2 Ground Cover

A vapor barrier must be installed on exposed dirt floors, with the following qualifications:

1. Minimum 6 mil transparent polyethylene
2. Installed neatly and covering the entire area, with seams lapped a minimum of 12”
3. Seams sealed with 3M 8086 tape or acoustic sealant
4. Penetrations with foam, acoustic sealant, or compatible roofing mastic.
5. Perimeter edges run 6" minimum up wall and sealed to walls with acoustic sealant or roofing mastic or lapped onto footing and held in place with weights (i.e. bricks, stones, sand bags etc)
 a. Exceptions made only where access is impossible due to low clearance.
 b. If vapor barrier is not present and not specified, or if proper installation is not possible, the situation must be brought to the attention of CSG’s field supervisor before work commences. **Photo:** Crawlspace Ground Cover.

3.5 Band Joist, Rim Joist, & Sill Insulation

3.5.1 Material Requirements

Installed insulation materials shall meet the appropriate requirements listed in *All Insulation – Physical Properties*. Installed 2-part spray foam must meet specifications from Appendix C. Foam exposed in the rim and band joist area will be either rated for exposure in conditioned spaces or be covered with a thermal barrier.

3.5.2 Installation Requirements

When underfloor insulation is not installed above a basement, insulation installed in direct contact with the wooden perimeter “band” or “rim” joist may qualify for the wall insulation incentive level, provided each joist bay is sealed for air leakage prior to installation of insulation. Batt-type or foam insulation used in this application shall be tightly installed, securely fastened, be at least R-15, and comply with state and local codes. A human contact barrier shall be installed over batt-type insulation. Incentives will not be paid for rim joist insulation installed in crawlspaces; underfloor insulation shall be installed in homes with crawlspaces.

Any of the following or combination of the following methods may be used to insulate the rim and band joist:

1. 2-part spray foam insulation that is either rated for exposure in conditioned space or covered with an fire barrier after installation may be used. In this application the foam can be extended from the subfloor to the junction of the foundation and the sill plate. In areas where termite presence exists, code may require an inspection break between the foam and the bottom of the sill. If there is a termite inspection break, then the seam between the foundation and the bottom of the sill must be sealed with caulk.

2. The rim joist can be sealed by cutting blocks of 2" foam board to fit in the rim joist area and sealing the edges with 1-part foam. (Foam board must either be rated for exposure (e.g., Thermax) or be covered with an approved fire barrier.) In this application the sill to foundation seam and the seam between the two sill plates must be sealed with caulk. **Photo:** Rim Joist Insulated (and Sealed to Sill) with Foam Board and 1-Part Foam.

3. If access to the gable wall joist bay prevents installation of 2" foam board, then the bay may be enclosed and the cavity densepacked. Care must be taken to ensure that the exposed foundation top is covered to prevent wicking into the insulation.

4. Joist area, dense packed, blown in insulation may be specified when basement ceiling is plastered.
5. Batt insulation may be used in the rim and band area if the seams between the box beam and the sill, the floor joists and the box beam and the box beam and the subfloor have been sealed with either caulk or 1-part foam. If the batt insulation is faced the vapor retarder must be toward the warm surface. The batt must be cut large enough to be friction fit in the box sill area. Along gable walls (joists parallel to foundation wall), batts must be neatly installed and in full contact with exterior joist – full dimension batt may be needed to fill joist bay.

6. Exposed sill seal material is to be cut back to edge of sill and a sealant is to be applied where the sill plate meets the foundation wall.

7. If the rim or band joist area is not accessible enough to allow the installation of Thermax, the CSG field manager should be contacted.

3.6 Knee Wall Attic Insulation

Knee walls that are uninsulated shall be insulated to a minimum of R-15 in a 2x4 cavity, and R-21 in a 2x6 cavity. Horizontal installations shall be insulated to R-21. When adding new insulation over existing Knee wall insulation, the cavity shall be completely filled. Do not install new insulation with a vapor retarder on top of pre-existing insulation. Existing condition must be R-4, or less, to qualify for a RePower Knee wall incentive.

Uninsulated skylight or pony walls between conditioned and unconditioned spaces within the attic area shall be sealed for air leakage insulated to a minimum of R-15 and create a continuous thermal boundary.

3.6.1 Material Requirements

Attic knee walls may be insulated with batt insulation, blown in blanket or 2-part spray foam. Batt insulation must be protected from wind washing with an air barrier. Accepted materials for wind wash protection are XPS, insulated structural sheathing, plywood or OSB, or wall board. Blown in blanket may or may not need an additional air barrier depending on the properties of the restraining mesh used.

3.6.2 Installation Requirements

3.6.2.1 Insulating knee walls with batt insulation

Batts should be cut to fit and fill the entire bay. There should be no gaps, compression or stuffing of insulation. An air impervious wind wash barrier should be installed on the back side of the installed batt insulation. The air barrier should be pulled tight and mechanically fastened with screws every foot for rigid materials. Seams in the wind wash barrier should be sealed using building wrap tape on building wrap or 1-part foam on rigid materials.

3.6.2.2 Insulating knee-walls with blown in and mesh

Knee walls can be sealed and insulated using dense pack cellulose or fiber glass. The density of the blown in material should be verified by using an area vs coverage chart comparison or a smoke test as detailed in **Wall Insulation - 2-Hole Installation Method**. If the material is dense packed and protected by the fiber reinforced mesh, it is not necessary to install a wind wash barrier.
3.6.2.3 Insulating knee walls with 2-part spray foam

See Appendix C.

3.6.2.4 Insulating knee wall transitions

See Kneewall Attic Air Sealing – Air Barrier Aligns with Knee Wall and Attic Floor.

3.7 Floors Over Unconditioned Spaces or Ambient Conditions Insulation

3.7.1 Overhangs Insulation

3.7.1.1 General

Overhangs that were not sealed and fully insulated during construction are a weak spot in a building's thermal envelope. The sheathing material that is used on the underside of the overhang or even ventilated overhang floors are contributing factors to poor performance of this building detail.

3.7.1.2 Material Requirements

The insulating material that will be used to insulate an overhang can be dependent on access. If the overhang is unsheathed or accessible through the rim and band joist, the floor joist bay can be filled with batt insulation, dense packed or sprayed with 2-part foam. If the overhang is sheathed and there is no access through the rim and band, then the floor joist bays can be dense packed with blown insulation. If limiting the flow of blown in material into the conditioned area of the floor bays is necessary, the inflated feedbag method described in Kneewall Attic Air Sealing – Installation Requirements should be used.

3.7.1.3 Installation Requirements

3.7.1.3.1 INSULATING AN OVERHANG WITH BATTS

When an overhang is accessible because it is unsheathed or accessible through the transition area at the top plate fiberglass batts may be used to insulate the floor bays. Batt insulation should be installed to fill the entire cavity without voids or compression. The depth of the fiberglass batt should equal the depth of the cavity. Because fiber glass batts do not stop air movement the transition area at the top plate should be thoroughly sealed after batt installation and the sheathing that will be added to the bottom chord of the floor joists will be sealed to the surrounding finish with exterior rated caulk. Adding a layer of rigid foam board on the floor joist bottom chord before re-sheathing if conditions permit should be considered as an option to increase overall R-value and reduce thermal bridging.

3.7.1.3.2 DENSE PACKING AN OVERHANG

When an overhang is sheathed or otherwise inaccessible dense pack insulation should be used to reduce air flow and increase the R-value of this area. A thorough inspection of the floor joist bays that will be affected should be conducted before beginning work. Recessed lights (unless they are ICAT) and HVAC ducts must not be dense packed around. The flow of insulation can be controlled using the “feedbag” method described in Kneewall Attic Air Sealing – Installation Requirements. Although not mandatory, the feedbag method is strongly recommended for use in every floor bay to control the flow of insulation into non-specified areas. When dense packing over hangs using the feedbag method the drill hole in each floor bay should be made as close to the transition area where the floor joist passes...
over the exterior wall top plate as possible. The feed bag should be inserted there and inflated to block the rim joist area. Once the rim joist area is sealed with the inflated feedbag, the fill tube can be withdrawn, reinserted into the joist bay cavity and the remainder of the overhang dense packed. If the overhang extends over the outside space more than 6 feet, additional holes should be drilled to ensure that the fill tube can reach all areas that are to be insulated. The density of the installed insulation should be checked using a coverage chart and the number of bags installed or by de-pressurizing the house and checking for air movement at the drill holes with smoke. Once the floor bays are dense packed the drill holes should be plugged. If there are frayed edges at the drill holes the strands should be pushed into the drill hole and a wooden plug inserted. The wood grain of the plug should run the same way as the wood grain of the sheathing. The plug should be made flush using a block and hammer.

3.7.1.3.3 INSULATING AN OVERHANG WITH 2-PART SPRAY FOAM

If the overhang is unsheathed and accessible 2-part spray foam may be used to seal and insulate this area. The transition area at the exterior wall plate should be backed with a rolled batt. See Appendix C for the proper installation of 2-part spray foam.

3.7.2 Frame Floor Over Garage Insulation

3.7.2.1 Batt Insulation

1. If faced insulation is specified, vapor barrier facing will be installed facing the heated space.
2. The insulation will be pushed into the floor bay far enough to ensure that the insulation contacts the sub-floor. Care should be taken not to compress the insulation more than necessary to achieve contact.
3. Insulation will be secured with support rods every 2 feet.
4. Areas above (freeze-ups and heat loss) and below pipes, ducts and around cross braces will be insulated. Insulation will be cut and fit neatly around all obstructions. Pipes and ducts will not be thermally isolated from the house.
5. Insulation will not be left exposed in areas of heavy use (house-wrap will be specified to cover insulation).
6. Crawl spaces exposed to the outdoors (unconditioned, ventilated crawl space) will have house wrap or equivalent installed beneath insulation for wind wash protection. Drywall or an equivalent air barrier will be recommended for garage ceilings. House wrap can be used in garage applications if it is securely fastened with staples and the seam are sealed with house wrap tape.

3.7.2.2 Dense Pack Insulation

1. All openings between the garage, overhang or crawlspace and the conditioned space must be sealed thoroughly.
2. If a rigid air barrier (drywall, structural Insulated panels etc) is already in place follow the same dense packing procedures as for Dense Packing an Overhang.
3. If there is no rigid air barrier in place, use the following procedure:
 a. A fiber reinforced membrane must be securely stapled to the floor joist at 2” intervals.
 b. The membrane should be slit every 6 feet and a fill tube used to dense pack the insulation to the required density for the material used.
c. The slits should be sealed using 3M 8086 tape or equivalent.
4. The area and cavity depth should be compared to the number of bags installed to verify
density.
5. Crawl space exposed to the outdoors (unconditioned, ventilated crawl space) will have house
wrap or equivalent installed beneath insulation for wind wash protection.

3.8 Duct Insulation

3.8.1 General

Duct sealing should take place before insulating ducts. If ducts have not been sealed, check with CSG
field supervisor before proceeding Supply and return ducts and plenums shall be insulated. Sheet
metal ducts and plenums shall be insulated with R-11, or greater, insulation batts. Flexible duct shall be
R-8, or greater. Special attention shall be paid to elbows and termination areas to ensure complete
coverage. All aspects of the measure described herein must meet the requirements of the Duct
Insulation specifications, unless physical barriers exist or this requirement is waived by RePower, in
order to be considered a “complete measure” and qualify for a duct insulation incentive. Waivers
require pre-approval by RePower; call 1.877.741.4340 for more information.

To qualify for a RePower incentive, existing condition must be R-2, or less, and ducts must be insulated
to R-11, or greater.

Exception: If tested duct leakage is less than 0.10 CFM₅₀ per sq. ft. of floor area (as defined by PTCS),
ducts may be insulated without further duct sealing. Documentation of PTCS-certified duct test shall be
provided to RePower. Ducts that do not meet this exception must be sealed prior to installing duct
insulation.

3.8.2 Locations and Use

Air conditioning ducts in unconditioned spaces should have a continuous Class I vapor retarder to avoid
condensation and water damage. The entire duct system should be insulated, but ducts that run near
the roof sheathing in cold climates should be paid special attention to. Failure to seal ducts in this area
can lead directly to ice damming.

3.8.3 Materials Requirements

1. Vinyl duct wrap with an R-value of 6 will be used to insulate ducts in unconditioned basements,
crawl spaces, or garages.
2. Vinyl duct wrap with an R-value of 8 will be used in unconditioned attics.
3. Vinyl Tape made especially for use on vinyl duct insulation (e.g. Nashua ASJ tape or equivalent)
4. Clamp stapler and staples

3.8.4 Installation Requirements

1. Duct insulation will be installed by wrapping insulation around ductwork and attaching neatly
using a clamp stapler. Two inches should be added to the width of the duct wrap to provide the
excess wrap needed to create a neat tight seam that can be stapled without compressing the
insulation. Do not pull the insulation too tight as this will compress it and decrease its R-value.
2. No fiberglass will be left exposed. All seams and tears in the vinyl vapor retarder will be sealed using vinyl tape. Photo: Sealed Vapor Retarder on Attic Ductwork.

3. No part of the duct system will be left un-insulated, including supply and return boots. When insulating cooling system ducts, the vapor retarder must be made continuous.

4. Floor joist bays used as return ducts will have duct insulation wrapped around 3 sides and stapled near the top of each joist or to the subfloor on each side. Duct insulation must be in substantial contact with all sides of duct area. Seams will be mechanically reinforced using vinyl tape.

4.0 ATTIC, ROOF & CRAWLSPACE VENTING

4.1 General

To facilitate the removal of moisture and heat from attic spaces, when attics are treated in the program with air sealing and insulation, they will need to be brought into compliance with state and local code requirements. The Washington State Energy Code defines required venting levels in Section R806.1 and 806.2. The first choice for venting attic space will always be passive venting installed as detailed below. In attic space where it is not possible to achieve the needed levels of passive venting, active (mechanical) venting may be achieved with Active (Mechanical) Attic Venting.

4.2 Passive Attic Venting

4.2.1 Design Guidelines

Attic ventilation installed in enclosed attics or enclosed slopes must be designed and installed for cross ventilation. In practice this means that as much as possible vent openings should be equally spaced between areas high in the attic or slope and low in the attic or slope. For attic spaces high ventilation would most likely be ridge vent or roof vents and low ventilation for attics or enclosed slopes would be soffit vents. The vents themselves should be configured to protect against the entrance of rain and snow. The vents should be backed with a corrosion resistant insect screen with openings between 1/16 to ¼ inches.

4.2.1.1 Attic roofs vs. cathedral slopes

Although attic roofs can have multiple configurations, from a venting perspective there are only two types of attics: Open attics and enclosed slopes. For the purpose of this guideline, enclosed slopes will be referred to as “vaulted ceilings”. Any other configuration such as sloped ceilings with attic space above may be called a sloped ceiling but performs like and should be vented as an open attic.

4.2.1.2 Open and closed roof slopes

Vaulted ceilings must be ventilated using vent chutes that connect the lower end of the vaulted bay to either a ventilated upper attic or ridge vent. Each bay must have vent chutes that are connected to each other and are stapled firmly into place. For open slopes this is as easy as installing the chutes and stapling them securely. For enclosed vaulted bays, especially ones that are more than 3-4 feet in length, correctly installing the vent chutes may not be possible. If correctly installing the vent chutes is not possible, then the vaulted bays cannot be insulated with fiber glass batts or blown in insulation.
Exception: Dense packing of enclosed slopes without the requirement of rafter bay ventilation is allowed if none of the following conditions exist:
1. If there are any known roof or flashing leaks, or visible evidence of leaks, these must be fixed before a contractor considers dense-packing.
2. IECC climate zones 7 and 8 provide too much risk of winter condensation; climate zone 6 is questionable, though less risky.
3. If an entire attic, roof, or cathedral ceiling is to be insulated, it must be done in accordance with best practices for unvented attics, or continuous vent chutes must be installed along with conventional eave and ridge vents or equivalent.
4. If the length of the enclosed cavity to be dense packed exceeds eight (8) feet.

For complete Technical Bulletin, see Appendix D.

4.2.1.3 Calculating and locating ventilation measures

Attic area measurements should be made following the guidelines in All Insulation – Measurement of Areas. The attic planes should be checked for the existence, location and condition of an existing Class I or II vapor retarder. Examples of Class I or II vapor retarders are: Kraft or foil facing on a batt, polyethylene sheeting or wallboard with two layers of latex paint. Once the class of vapor retarder situation is identified, the attic area (including vaulted areas) should be divided by either 150 if there is no vapor retarder or 300 if there is a vapor retarder. The result of this calculation is the amount of attic ventilation required by national code. Roughly half of this ventilation should be installed high in the attic and half low in the attic. Next, the existing ventilation should be assessed, the net free area calculated (see below), broken into high and low ventilation and subtracted from the appropriate high or low ventilation of the code required ventilation area. (See Attic, roof, & Crawlspace Venting – General) The results of subtracting the existing ventilation area from the code required ventilation area is the area of ventilation that needs to be installed to ventilate the attic to code levels.

1. Continuous Soffit Venting: Newer homes may have continuous soffit venting installed when constructed. Continuous soffit vent has a net free area of 0.12 square feet per linear foot. Perforated drip edge is another form of low ventilation. The integrity of the drip edge should be assessed before giving ventilation credit to it as it can be crushed during installation and its net free area reduced. In some cases where attic height is very low, gable vents may be used as low ventilation. In these cases it may be necessary to dam off the gable vent to keep it clear of blown in insulation.

2. Net free area vs gross area: Code requirements state the amount of ventilation area required as a net free area. Net free area is not the same as the external dimensions of any particular type of vent. Therefore it is necessary to determine what amount of any vent type is required to satisfy the code guidelines based on the net free area of the vents. Most vents have their net free area stamped on them. The net free area required should be divided by the net free area of the vent chosen to determine how many vents of that type are needed to satisfy the ventilation requirement.

4.2.2 Site Conditions

1. The existing condition of the attic plane must be tested to be tight by way of the blower door and pressure differential or visual inspection of all bypasses before more passive ventilation is
added. If the attic plane is going to be tested with a blower door rather than a visual inspection of bypasses, the “Add a Hole” or “Open a Door” method must be used to quantify leakage across the attic plane. To be considered tight the CFM50 across the attic plane must be less than 0.5 CFM50/sq ft.

2. All exhaust equipment (bath fans, kitchen fans, clothes dryers) is to be vented to the outside of the structure. This measure must be performed in all cases or no insulation or ventilation work will be performed.

3. Cathedral slopes: Vents will need to be placed to ensure the desired flow of air through them. In addition to calculating how much net free area is required and how much will be high or low ventilation, there are additional issues that must be taken into account before deciding what type of vent to install and where the vent will be placed to ensure that minimum flow rates are achieved. No vent chutes or low vents should be installed in bays that dead end in skylights, chimneys, valleys, hips or other obstructions that will block the flow of ventilation air.

4.2.3 Material Requirements

4.2.3.1 Inlets

Inlet vents will be soffit vents in standard sizes of 4x12, 6x12 and 8 x12. The common acceptable finishes will be mill, white or brown. Soffit vents must be chosen that have the net free area of the vent stamped on it. All soffit vents must have insect screens as an integral part of the vent. Mill finish soffit vents shall be spray painted to match house colors if the homeowner supplies the paint and labor. Care should be taken when spray painting to avoid reducing the net free area by clogging the insect screen.

4.2.3.2 Outlets

1. Gable vents: Standard gable vent sizes are 12 x 12, 12 x 18 and 18 x 24. Standard finishes are mill, white, and brown. Net free area will be stamped on the back of the gable vent. Insect screen will be an integral part of the vent. Mill finish gable vents shall be spray painted to match house colors if the homeowner supplies the paint and labor. Care should be taken when spray painting to avoid reducing the net free area by clogging the insect screen.

2. Roof vents: The standard roof vent size is eight inch. Typical colors and finishes are mill, black, grey and brown. These vents may be made of aluminum or vinyl. The net free area must be stamped on the flange of the vent. They must have an insect screen as an integral part of the vent. Mill finish roof vents shall be spray painted to match house colors if the homeowner supplies the paint and labor.

3. Ridge vents: Ridge vents typically come in four and 8 foot lengths. Standard colors and finishes are mill, black and brown. Shingle over ridge vents can be installed if cap shingles are available to complete the installation. Insect screens will be an integral part of the ridge vent.

4. Soffit Baffles: Soffit areas will be baffled for wind wash protection, to keep a ventilation channel open and to keep blown insulation from entering the soffit area. Baffles can be site made using rigid foam board, structural insulated sheathing, framing lumber, plywood, moisture resistant cardboard or OSB. Preformed baffles are also available, and are allowed to be used.
4.2.4 Pre-Installation Requirements

4.2.4.1 Air Barrier

The existence of a complete air barrier must be verified using either a blower door and pressure differentials or by visual inspection of the major bypasses in the attic plane (see All Air Sealing – General).

4.2.4.2 Duct Sealing

Ductwork contained in the attic must be sealed and insulated to at least R-8 before passive ventilation is added.

4.2.5 Installation Requirements

1. Soffit vents: Do not install bath, dryer, or heating system vent outlets in or below soffits that provide inlet ventilation to vented roof slopes or attics.
2. All vents will be properly flashed with roofing and siding materials.
3. All vents will be installed to manufacturer’s specifications and properly sealed to be watertight.
4. All installed vents will be thoroughly caulked to prevent any leakage.
5. All vent openings will be cut to appropriate size for installed unit.
6. All installed soffit vents will have soffit baffles installed in the bays they ventilate.
7. Continuous soffit vent will have soffit baffles installed in as many bays as is required to meet code requirements for low ventilation based on the net free area of the continuous soffit vent.
8. Vent chutes will be installed in all sloped bays either open or enclosed that do not meet the exceptions of Appendix D before insulation is installed. The vent chutes shall interlock to form a continuous air channel from the inlet ventilation to the outlet ventilation.

4.2.6 Post-Installation Requirements

After insulation is installed in attic areas that were either baffled to keep cellulose out of the soffit area or to hold open a ventilation path, the area should be checked to ensure that the baffles kept the soffits clear and the vent path open. Vent chutes installed in enclosed cavities and then blown with insulation should be inspected to ensure that they stayed in place and are clear.

4.3 Crawlspace Venting

4.3.1 General

If a crawlspace is passively vented to the requirements of Section 408.1 and 408.2 of the WSEC 2009 (1 square foot of vent area for every 150 square feet of area or 1/1500 if there is a Class I vapor retarder and the vents are correctly placed for cross ventilation) then a mechanical ventilation system is not required. Crawl spaces do not have to be passively vented if:

1. They have a continuous Class I vapor retarder installed with 6” overlaps sealed and taped at the seams.
2. A mechanical ventilation system installed capable of either exhausting or supplying 1 CFM/50 square feet of area including an air path to conditioned area.
3. The walls are insulated in accordance with WSEC 2009 Section N1102.2.9.
This section subject to change. Before a mechanical ventilation system is installed in a crawl space, a Radon assessment should be made. CSG is awaiting the results of the DOE/EPA funded national WAP study which will include an evaluation of the relationship between air sealing and radon concentrations. Those results will inform the recommendations on radon testing and communications to the building occupants.

4.3.2 Material Requirements

1. Installed fan shall be rated for continuous use and have a Sone rating of less than 1.0.
2. Fan shall be controlled by an on/off switch as the fan shall not run on a schedule. It will run continuously.
3. If the system is an exhaust system there must be a vent termination with an integral pest screen and a back draft damper.
4. System ducting shall be hard duct.

4.3.3 Installation Requirements

1. All electrical installations required for installation of this system will be installed by a licensed electrician.
2. The fan shall be securely fastened to the floor framing system and sound attenuators will be used to minimize the transfer of vibration and sound.
3. The fan control will be mounted adjacent to the fan and out of easy reach of the homeowner.
4. If this is an exhaust system the fan shall be hard ducted to the exterior with the ducts supported every 10 feet.
5. The vent termination shall be neatly installed and tied into the existing drainage plane. Exterior finish surrounding the vent will be returned to its original condition.
6. For exhaust systems a permanent opening shall be made from the conditioned space to the crawl space large enough to relieve the pressure induced by the fan.
7. For supply systems the fan shall be ducted to conditioned space and will draw air from the house and deposit it in the crawl space.

5.0 WINDOW, DOOR & ATTIC ACCESS MEASURES

5.1 Attic Access Air Sealing & Insulation

5.1.1 General

WSEC 2009 502.1.4.4 calls for attic accesses to be insulated to the same level as the surrounding attic. These guidelines will recommend methods to achieve this requirement while recognizing the difficulty of compliance. Existing access to the attic will be maintained. Weather-stripping will be permanently affixed to hatch or framing. Generally “Q-lon strips” or equivalent is preferred.

5.1.2 Material Requirements

5.1.2.1 Attic Doors

Attic doors will be weather stripped using Q-lon strips or Q-lon with carrier. The bottom of the door will be swept with a standard non-spring loaded sweep. The back side of the door will be insulated
with rigid foam board or batt insulation attached with twine. If the attic space is used for storage or any purpose other than repairs or maintenance, the foam board will be rated for exposure or have a thermal barrier.

5.1.2.2 Pulldown Stairs

Pulldown stairs will be treated with an attic stair case cover that can be either site made or purchased as a kit. The cover must have the capability to make the staircase both air tight and insulated to program guidelines.

5.1.3 Installation Requirements

5.1.3.1 Attic Doors

Knee wall access doors fall under this category. The door will be weather-stripped using Q-lon strips that have been cut to fit and the corners mitered to form an air tight seal. The Q-lon will be mechanically fastened with ½ inch staples every six inches. The seam between the framing or finish and the Q-lon will be sealed with a bead of caulk. The door will be swept with a non-spring loaded door sweep. Rigid foam board insulation or batt insulation secured with twine will be attached to the back side of the door. The depth of the insulation attached will match the R-value of the wall the door is in. The insulation will be attached with screws and 1 inch washers spaced 8 inches apart. If the foam board insulation is not rated for exposure, a thermal barrier will need to be installed.

Any outside access shall have a door that is easily opened to permit inspection, and shall be weather-proof and vermin-proof.

5.1.3.2 Attic Hatches

Attic hatches will be weather-stripped using Q-lon strips cut to fit with mitered corners to form an air tight seal if the framing allows. The Q-lon will be mechanically fastened with ½ inch staples every six inches. The seam between the Q-lon and the finish will be sealed with a bead of caulk. If the framing does not allow the use of Q-lon strips then a closed cell foam with adhesive backer will be used. A positive closing mechanism (such as eye hook) will be installed on the hatch if needed to compress the weather-stripping. The back side of the hatch will be insulated using either rigid foam board or a fiberglass batt. WSEC 2009 requires that the hatch be insulated to the same level as the surrounding attic. This may require five to six layers of foam board or using a batt that matches the surrounding attic R-value. If foam board is chosen, the first layer of foam board will be attached using screws and 1 inch washers spaced every 8 inches. Additional layers should be added by gluing to the lower layer using construction adhesive. Do not use a petroleum based adhesive on the XPS. If a batt is used to insulate, use a batt with a kraft facing and glue it to the hatch. Use twine stapled to the side of the hatches to cross over the batt and hold it into place. Do not compress the batt with the twine.

5.1.3.3 Attic pull-downs (Therma-dome)

If the attic access is a pulldown staircase, an attic staircase cover will need to be built either from rigid board (foil faced isocyanurate) and weather-stripping constructed on site or using a kit. The cover will need to be cut to lengths that fully encompass the framing surrounding the staircase. The side should be of sufficient height to accept the folding stairs without being disturbed. Joints in the cover will be
adhered to each other using construction glue and the seams sealed with foil tape. The framing around the stair opening will be made level enough to engage Q-lon strip weather-stripping using 4 inch strips of ½ inch plywood secured with 2” drywall screws. The box will be secured in place with some type of mechanical fastener that will compress the Q-lon weather-stripping and form an air tight seal. The cover shall have a minimum r-value of 10. If the stair case cover is not rated for exposure, it will need to be treated with a thermal barrier.

5.1.3.4 Attic walk-ups

See Attic Doors.

5.1.3.5 Whole house fans

Whole house fan covers will be treated like attic stair case covers in regards to acceptable materials, installation techniques and code compliance. The fan itself should be dammed off from any blown material for a distance of two feet around the fan perimeter using batts laid flat.

6.0 VENTILATION SYSTEMS

6.1 General

Fresh air ventilation will be provided per the requirements of BPI's Technical Standards for the Building Analyst Professional.

6.2 Whole House Exhaust-only Systems

6.2.1 Material Requirements

1. Fan Specifications: Exhaust fans that will be used as whole house ventilation fans must have two qualities. They must be rated for continuous use and they must have a noise rating of 1.0 sones or less. Examples of fans of this type are: Ceiling mount fan: Panasonic FV-11VQ2, Ceiling mount fan/light: Panasonic FV-11VQ2L or Wall mount fan: Panasonic FV-08WQ1.
2. An in-line fan remotely mounted and connected to one or more bathrooms and controlled by a 24 hour timer is a hybrid of the exhaust only system. The in-line fan must be mounted with vibration attenuators. Photo: In-line Exhaust Fan Ventilation.
3. Controls: Minimum requirements for the exhaust fan timer is that they be a 24 hour timer capable of turning the fan on and off at pre-set times without interference by the occupants. Examples of acceptable 24 hour timers are: Tamarack “Airetrak” control, 24-hour dial timer from Grasselin, 7-day 14 event timer (from Aube).

6.2.2 Installation Requirements

1. Exhaust fans and 24 hour timers will be installed neatly and according to manufacturer’s installation instructions. Gaps between the fan housing and surrounding finishes will be sealed with caulk or 1-part foam.
2. Fans will have an on/off switch separate from the timer that occupants will use for spot ventilation. The 24 hour timer will be remotely located out of easy reach of the occupants.
3. Fans will be installed with air outlet facing in the direction that the duct will be run to minimize the need for elbows.

4. Exhaust Location: WSEC 2009 Section M1501.1 forbids the venting of exhaust fans of any type into attics, soffit vents, ridge vents, or a crawl space. Exhaust vents will be vented to either a roof flapper vent, an end wall flapper vent or if neither of these two options is available, to an exhaust vent designed to be installed in a soffit. All exterior flapper vents will be equipped with a back draft damper that works smoothly. Back draft dampers at the fan unit should be removed. Vent outlets shall be properly flashed and sealed into roof or siding materials so water will not leak into the assembly.

5. Exhaust ducting will be attached to the fan outlet and the flapper vent connector with metal clamps. The duct will be insulated to current code levels for the location it passes through. The duct insulation will have a vapor retarder covering. Hard duct will be supported every 10 feet with 1” metal straps. Flex duct will be supported according to manufacturer’s instructions.

6.3 Whole House Supply Systems

6.3.1 General

A fresh air, positive pressure, supply system that depends on the air handler and existing duct system is an acceptable ventilation system. This system consists of a duct run from the exterior to the return plenum of the central heating-AC system with a motorized damper in-line. The third component of this system is a controller that opens the damper in the fresh air duct and then turns on the HVAC system air handler fan on low speed. The negative pressure created by the fan draws fresh air into the HVAC system through the fresh air duct and then distributes the fresh air throughout the house using the existing duct system.

6.3.2 Material Requirements

1. AirCyler controller or similar to control the system.
2. In-line motorized damper for six inch hard duct.
3. Industrial grade 6” exhaust vent with 1/8” steel mesh pest screen with back draft damper removed.
4. Six inch metal hard duct.

6.3.3 Installation Requirements

1. For this alternative system it would still be necessary to have localized exhaust ventilation for spot ventilation in the Bathrooms and Kitchen.
2. Six inch fresh air duct will be hard metal duct supported every 10 feet. All joints will be screwed together at three points.
3. All joints and seams in the fresh air duct will be sealed with duct mastic.
4. The fresh air intake vent will not be within 10 feet of any pollutant source. In cold climates it will be at least two feet above grade. There will not be a back draft damper as part of this vent. There will be a pest screen. The vent will be properly flashed and tied into the existing drainage plane and the existing siding will be repaired/replaced to original conditions.
5. The zone damper will be motorized and controlled by the system controller. Low voltage wiring connecting the two components will be run neatly and properly secured to the six inch duct using vinyl straps.
6. The system controller will be securely mounted on the supply plenum of the HVAC system.
7. The manufacturer’s literature for the controller and the motorized damper will be left with the homeowner.

6.4 Kitchens

6.4.1 General

Kitchen venting at the range hood will comply with WSEC Sections M1503.

6.4.2 Materials Requirements

1. Kitchen exhaust fans will be capable of exhausting 25 CFM continuously or 100 CFM intermittent. Any kitchen exhaust system that exhausts more than 400 CFM will be required to have a make up air system that conforms to WSEC 2009 Section M1503.4.
2. Ducts connected to kitchen range hoods will be constructed of galvanized steel, stainless steel or copper. The ducts shall have a smooth interior surface, shall be air tight and will have a back draft damper installed.

6.4.3 Installation Requirements

1. All kitchen exhaust fans will vent directly to the exterior, they shall not terminate in an attic or crawl space area.
2. Installed duct for kitchen range hoods shall be considered a heat source and will be sealed with fire proof caulk meeting ASTM E 136.
3. Hard duct will be supported at least every 10 feet. All joints in the duct will be screwed securely at 3 points with no more than 3/8” screws. A securely tightened metal clamp will be acceptable in locations where space prohibits installation of sheet metal screws.
4. All kitchen exhaust systems will terminate outside of the building. Vent terminations will be equipped with a back draft damper and be tied neatly into the existing drainage plane and finish.
5. If a new exhaust duct is required for a kitchen stove, it shall be at least 28-gauge galvanized steel, stainless steel, copper, or aluminum, and have a smooth interior surface. The exhaust duct shall be airtight and extend directly into a code-approved, metal vent cap. Vent ducts shall be securely attached at each joint and to the fan housing using mechanical fasteners. The exhaust duct shall meet manufacturer’s requirements and all local building codes. At least one back-draft damper shall be functioning in each system, either at the fan or where vented to the outside. Exhaust ducting shall be insulated to a minimum R-4 when required for code compliance.
7.0 MECHANICAL SYSTEMS

7.1 General

All systems installed by contractors in the Re-Power program will need to comply not only with program guidelines, but will also need to comply with state and local codes.

7.2 Heating and Cooling Systems

7.2.1 Air Source Heat Pumps

Air source heat pumps must replace an existing electric hot air furnace to be eligible for program incentives. This upgrade and incentive can be combined with the heat pump sizing and lock out control incentive.

7.2.1.1 Material Requirements

1. All installed equipment must be AHRI certified
2. All installed equipment must have a minimum HSPF of 8.5 and at least 14 SEER for Tier 1, HSPF of 9.0 and 14 SEER for Tier 2 or 10.0 and 16 SEER for Tier 3.
3. All installed equipment shall be sized in accordance with ACCA Manual-J.
4. Equipment selected using ACCA Manual-S or other approved equivalent
5. Contractor must use ACCA Manual D to design newly installed duct systems.
6. All systems must have a TXV refrigerant metering device installed.
7. An equipment-compatible thermostat will be installed and properly leveled, calibrated as specified by the equipment manufacturer and appropriately located with preference given to installing programmable thermostats design for use with the installed equipment.

7.2.1.2 Installation Requirements

All air source heat pumps installed must comply with state and local codes. All installed systems shall:
1. Have refrigerant lines that are fully insulated with ½ inch closed cell rubber pipe insulation and are properly supported. I would only require the vapor line be insulated with 3/8” and use the following language: “Refrigerant vapor (suction) lines shall be continuously insulated and vapor sealed with a minimum thickness of 3/8 inch of closed cell rubber equivalent to 3/8 inch of insulation, or equivalent, and all seams sealed.”
2. Outdoor equipment shall be placed on level concrete pad or equivalent.
3. Equipment shall meet all manufacturer specified minimum clearances
4. Indoor equipment shall have properly installed condensate line that is trapped and insulated.
 Indoor equipment shall have a drip pan that extends under the entire unit.
5. Service - All units shall be located to allow service access for removal of any unit component without removing any piping, ductwork, or other permanently installed fixtures or components.
6. In no case (for normal heat pump operation) shall the auxiliary heater(s) be wired to energize during the first heating stage of the indoor thermostat.
7. Split systems shall, where feasible, use only new, appropriately insulated refrigerant line sets specified by the manufacturer not in excess of 50 feet.
8. Refrigerant piping shall be supported properly to prevent excessive sagging, movement, or vibration and limit lateral movement, but permit normal thermal expansion and contraction.

9. The linear, one way length of refrigerant piping between the two sections of split units shall not exceed the maximum distance specified in the manufacturer's published literature. The compressor section shall not be more than 20 feet above or below the indoor unit. Oil traps or double suction risers, as required by the heat pump manufacturer, shall be provided for oil return.

10. Either a manual emergency heat switch on the subbase, or automatic controls (factory installed) within the heat pump shall be supplied to allow all of the auxiliary electric heaters to be electrically turned on during the heating season (under control of the indoor thermostat but with the compressor and outdoor thermostats bypassed) for use when the heat pump compressor or associated refrigeration equipment is inoperative.

11. The Contractor shall secure, on the access door of unit, a sticker showing their name, regular phone number, emergency service phone number (if applicable), and date of system startup. There shall be, affixed to the exterior of the unit, an envelope containing all installation and operating manuals, warranties, AHRI certificate, and the contractor’s start-up and commissioning report per manufactures protocol. The Contractor or his/her representative shall instruct the owner on the complete operation of the heat pump system at the time of system startup.

12. Refrigerant piping installed in the earth or below a concrete slab shall be protected in conduit or a minimum of Schedule 40 PVC (polyvinyl chloride). The encasement diameter shall be at least 1 inch greater than that of the tubing and its insulation. The casing shall be laid in a straight line as possible to permit removal or insertion of the piping and shall terminate above the grade level.

13. All air filters shall be installed in the return air system in a location that is easily accessible for the homeowner to change.

14. Contractor must ensure all refrigerant piping installed:
 a. Have the correct size line set on split systems
 b. Are brazed with a nitrogen purge in the line set and indoor coil.
 c. Have a vacuum of 500 microns drawn before releasing the factory
 d. Charge, with no leaks.

7.2.2 Ductless Heat Pumps

7.2.2.1 Material requirements

1. All installed equipment shall be AHRI Certified.
2. All installed equipment shall use inverter technology and be at least one ton or larger.
3. All installed equipment shall be sized in accordance with ACCA Manual-J.
4. See my comments for Air Source Heat Pump section except items 5,9,10.

7.2.2.2 Installation Requirements

All ductless heat pumps installed must comply with state and local codes. All installed systems shall:
1. Have refrigerant lines that are fully insulated with ½ inch closed cell pipe insulation and are properly supported. All exterior line sets shall be installed with manufacturer’s recommended line set covers and according to the manufacturer’s specifications.
2. Outdoor equipment shall be placed on level concrete pad or equivalent.
3. Equipment shall meet all manufacturer specified minimum clearances
4. Indoor equipment shall be installed level.

7.2.3 Ground Source Heat Pumps

7.2.3.1 Material Requirements

1. All installed systems shall be Energy Star rated.
2. All installed systems shall be sized in accordance with ACCA Manual.
3. Equipment selected using ACCA Manual-S or other approved equivalent
4. Contractor must use ACCA Manual D to design newly installed duct systems.
5. All systems must have a TXV (thermal expansion valve) refrigerant metering device installed. Direct Exchange Ground Source Heat Pumps (DXGS) are not allowed.

7.2.3.2 Installation Requirements

1. The ground interface heat exchanger fluid temperatures [extremes] and flow rates used as the basis for design equipment capacity are within the range specified in OEM guidelines.
2. The ground heat exchange design methodology incorporates:
 a. Thermal characteristics
 b. Climatic characteristics of the project location
 c. Contractor to provide start-up and commissioning report per manufactures protocol.

7.2.4 Natural Gas Furnaces

7.2.4.1 Material Requirements

1. Installed systems shall have an AFUE of 90% or greater and be sealed combustion
2. An equipment-compatible thermostat will be installed and properly leveled, calibrated as specified by the equipment manufacturer and appropriately located with preference given to installing programmable thermostats design for use with the installed equipment.
3. All installed equipment shall be sized in accordance with ACCA Manual-J.
4. Equipment selected using ACCA Manual-S or other approved.
5. Contractor must use ACCA Manual D to design newly installed duct systems.

7.2.4.2 Installation Requirements

1. All installed systems shall have both the combustion air intake and the combustion gas exhaust piped to the exterior.
2. All positive pressure combustion gas venting systems will be sealed tightly and appropriately supported
3. All equipment will be installed in accordance with manufacturer’s specifications.
4. Service - All units shall be located to allow service access for removal of any unit component without removing any piping, ductwork, or other permanently installed fixtures or components.
5. The air flow from two or more units shall not be connected in parallel to a common supply or return air duct system.

6. All air filters shall be installed in the return air system in a location that is easily accessible for the homeowner to change. All return air must pass through an enclosed, direct ducted distribution system.

7. Venting shall have the proper sizing, design, material selection and assembly of the combustion gas venting system.

8. Gas piping to be leak-free and to provide adequate gas supply to all connected gas appliances.

9. Airflow through Gas Furnace must operate within manufacturers design specifications (with all accessories and system components in place).

10. The Contractor shall secure, on the exterior of unit, a sticker showing their name, regular phone number, emergency service phone number (if applicable), and date of system startup. There shall be, affixed to the exterior of the unit, an envelope containing all installation and operating manuals, warranties, and the contractor’s start-up and commissioning report per manufacturer’s protocol. The Contractor or his/her representative shall instruct the owner on the complete operation of the heating system at the time of system startup.

7.2.5 Natural Gas Hearth (Gas Logs)

7.2.5.1 Material Requirements

1. All installed hearths shall be sealed combustion with a dedicated combustion air intake
2. All installed hearths shall have a minimum rated efficiency of 80%

7.2.5.2 Installation Requirements

1. All installed hearths shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting shall be run to the exterior of the building and will terminate with an approved end cap.
3. Vent piping shall slope at a minimum of ¼'/foot or according to manufacturer’s specifications.

7.2.6 Hot Water Boiler

All installed systems shall be installed by a RePower trade ally

7.2.6.1 Material Requirements

1. Installed systems shall have a minimum rated efficiency of 85%
2. All installed equipment shall be sized in accordance with ACCA Manual-J or IBR load calculations

7.2.6.2 Installation Requirements

1. All systems shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting systems shall be run to the exterior of the building and terminate with an approved end cap.
3. Vent piping shall have a minimum slope of ¼” per foot or according to manufacturer’s specifications.
4. Service - All units shall be located to allow service access for removal of any unit component without removing any piping, ductwork, or other permanently installed fixtures or components.
5. Venting shall have the proper sizing, design, material selection and assembly of the combustion gas venting system.
6. All existing piping and radiators must be properly flushed to remove any sediment/slime in order to prevent any blockage or reduction in efficiency of the new boiler.
7. Design and install boiler and system piping to prevent oxygen contamination of boiler water and frequent water additions. No leaks.
8. A raw water analysis should be taken initially of each installation so that the correct Water Treatment can be established and installed. The treatment must be compatible with materials of construction.
9. Size and install gas/oil piping to provide adequate gas/oil supply to boiler with no gas leaks.
10. All boiler trim/controls and near boiler piping to be installed as per manufacturer’s specifications.
11. Contractor to ensure proper (gpm) flow through boiler and all radiators.
12. The Contractor shall secure, on the exterior of unit, a sticker showing their name, regular phone number, emergency service phone number (if applicable), and date of system startup. There shall be, affixed to the exterior of the unit, an envelope containing all installation and operating manuals, warranties. And the contractor’s start-up and commissioning report per manufacturer’s protocol. The Contractor or his/her representative shall instruct the owner on the complete operation of the heating system at the time of system startup. Contractor shall provide start-up and commissioning report per manufactures protocol.

7.2.7 Steam Boiler

All systems shall be installed by a RePower trade ally.

7.2.7.1 Material Requirements

1. Installed systems shall have a minimum rated efficiency of 82%.
2. Steam boiler size to existing radiation (EDR)

7.2.7.2 Installation Requirements

1. All systems shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting systems shall be run to the exterior of the building and terminate with an approved end cap.
3. Vent piping shall have a minimum slope of ¼” per foot or according to manufacturer’s specifications.
4. Service - All units shall be located to allow service access for removal of any unit component without removing any piping, ductwork, or other permanently installed fixtures or components.
5. Venting shall have the proper sizing, design, material selection and assembly of the combustion gas venting system.
6. A raw water analysis should be taken initially of each installation so that the correct Water Treatment can be established and installed. The treatment must be compatible with materials of construction.
7. The Contractor shall secure, on the exterior of unit, a sticker showing their name, regular phone number, emergency service phone number (if applicable), and date of system startup. There shall be, affixed to the exterior of the unit, an envelope containing all installation and operating manuals, warranties. And the contractor’s start-up and commissioning report per manufacturer’s protocol. The Contractor or his/her representative shall instruct the owner on the complete operation of the heating system at the time of system startup. Contractor shall provide start-up and commissioning report per manufactures protocol.

8. All existing piping and radiation must be properly flushed to remove any sediment/sludge in order to prevent any blockage or reduction in efficiency of the new boiler.

9. Inspect steam vents and traps. Clean or replace as necessary.

10. All boiler trim/controls and near boiler piping to be installed as per manufacturers specifications.

11. Contractor to ensure that dry steam is delivered to all supply headers, piping and all radiation with adequate returning condensate to boiler.

7.2.8 Oil or Propane Furnace with ECM

All systems must be installed by a RePower trade ally.

7.2.8.1 Material Requirements

1. Oil systems shall have a minimum rated efficiency of 83%
2. Propane systems shall have a minimum rated efficiency of 92%
3. See comments for gas furnaces.

7.2.8.2 Installation Requirements

1. All systems shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting systems shall be run to the exterior of the building and terminate with an approved end cap.
3. Vent piping for natural draft systems shall have a minimum slope of \(\frac{1}{4} \)” per foot or according to manufacturer’s specifications.

7.2.9 Oil or Propane Furnace

All systems shall be installed by a RePower trade ally.

7.2.9.1 Material Requirements

1. Oil systems shall have a minimum rated efficiency of 83%.
2. Propane systems shall have a minimum rated efficiency of 90%
3. See comments for gas furnaces.

7.2.9.2 Installation Requirements

1. All systems shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting systems shall be run to the exterior of the building and terminate with an approved end cap.
3. Vent piping for natural draft systems shall have a minimum slope of \(\frac{1}{4} \)” per foot or according to manufacturer’s specifications.
7.2.10 Propane Hearths

7.2.10.1 Material Requirements

1. Installed hearths shall have a minimum rated efficiency of 80%.
2. Installed systems shall have a dedicated combustion air intake.

7.2.10.2 Installation Requirements

1. All installed hearths shall be installed in accordance with manufacturer’s specifications
2. All combustion gas venting shall be run to the exterior of the building and will terminate with an approved end cap.
3. Vent piping shall slope at a minimum of \(\frac{1}{4}\)"/foot or according to manufacturer’s specifications.

7.3 Domestic Hot Water Systems

7.3.1 Heat Pump Water Heater

7.3.1.1 Material Requirements

Installed systems must have an energy factor greater than or equal to 2.0.

7.3.1.2 Installation Requirements

1. Installed systems shall be installed outside conditioned living space such as a garage, attic, or crawlspace.
2. Installed systems shall be installed according to manufacturer’s specifications

7.3.2 Electric Storage Water Heater

7.3.2.1 Material Requirements

1. All installed storage tanks shall have an energy factor of .94 or greater.
2. All installed storage tanks shall have a minimum rated capacity of 50 gallons.

7.3.2.2 Installation Requirements

Installed storage tanks shall be installed to manufacturer’s specifications.

7.3.3 Waste Water Heat Recovery System

7.3.3.1 Material Requirements

1. Installed equipment shall have an EF of 42% or greater.
2. Installed systems must be professionally manufactured and rated.

7.3.3.2 Installation Requirement

Installed systems shall be installed vertically.

7.3.4 Gas Storage Tank

7.3.4.1 Material Requirements

Installed systems shall have a minimum energy factor of .62.
7.3.4.2 Installation Requirements
1. All systems shall be installed according to manufacturer’s specifications
2. Natural draft system venting shall slope a minimum of ¼” per foot and shall be installed according to the guidelines defined in the Natural Fuel Gas Code Handbook.

7.3.5 Combination Hydronic Heating and DHW Systems

7.3.5.1 Material Requirements
1. Only manufacturer approved combination hot water/space heating hydronic heaters shall be allowed to be used as combination systems.
2. Approved tank-less systems shall have a minimum rated efficiency of 92%.

7.3.5.2 Installation Requirements

7.3.6 Oil or Propane Storage Tanks
All systems shall be installed by a RePower trade ally.

7.3.6.1 Material Requirements
Installed systems shall have a minimum energy factor of .62.

7.3.6.2 Installation Requirements
1. All systems shall be installed according to manufacturer’s specifications
2. Natural draft system venting shall slope a minimum of ¼” per foot and shall be installed according to the guidelines defined in the Natural Fuel Gas Code Handbook.

7.3.7 Tankless Water Heaters
All systems shall be installed by a RePower trade ally.

7.3.7.1 Material Requirements
Installed systems shall have a minimum energy factor of .82

7.3.7.2 Installation Requirements
1. All systems shall be sealed combustion.
2. All systems shall have both the combustion air intake and the combustion gas outlet vented to the exterior and shall terminate with an approved end cap.

7.3.8 Combination Tankless Water Heaters
All systems shall be installed by a RePower trade ally.

7.3.8.1 Material Requirements
All systems shall be tankless water heaters with a minimum efficiency of 90%

7.3.8.2 Installation Requirements
1. All systems shall be sealed combustion.
2. All systems shall have both the combustion air intake and the combustion gas outlet vented to the exterior and shall terminate with an approved end cap.
APPENDIX A: Example Pictures

Top Plates Sealed with 1-Part Foam (Click to Return to Section)

Dropped Soffit Sealed with XPS and 1-Part Foam (Click to Return to Section)
Knee Wall Transition Sealed with XPS and 1-Part Foam ([Click to Return to Section](#))

Attic Hatch Weatherstripped ([Click to Return to Section](#))
Pull-down Stair Cover (Click to Return to Section)

Chimney in Attic Sealed with High-Temp Caulk and Metal Flashing (Click to Return to Section)
Bath Fan Sealed with 1-Part Foam (Click to Return to Section)

Open Attic Chase Sealed with Sheet Metal, Duct Mastic and Acoustical Sealant (Click to Return to Section)
Plumbing Wet Wall Sealed with Fiberglass Batt Backer and 1-Part Foam (Click to Return to Section)

Ceiling Height Transition Wall Sealed with 2-Part Foam (Click to Return to Section)
Chimney in Basement Sealed with Sheet Metal and High-Temp Caulk (Click to Return to Section)

Rim Joist Sealed to Sill (and Insulated) with Foam Board and 1-Part Foam (Click to Return to Section)
Kneewall Attic Air Sealed Along Rafter Line (attic space within thermal/pressure boundary) (Click to Return to Section)

Kneewall Attic Diagram for Air Sealing Along Wall/Floor Framing (attic space outside thermal/pressure boundary) (Click to Return to Section)
Diagram of General Air Leakage Paths (Click to Return to Section)

Insulation Wind Wash Baffle (Click to Return to Section)
Roof Line Venting Chute (Click to Return to Section)

Loose Fill Attic Insulation Evenly Installed (Click to Return to Section)
Attic Insulation Dammed Away From Chimney (Click to Return to Section)

Smoke Testing Densepack (Click to Return to Section)
Crawlspace Ground Cover (Click to Return to Section)

Rim Joist Insulated (and Sealed to Sill) with Foam Board and 1-Part Foam (Click to Return to Section)
Metal Ductwork Sealed with Mastic (Click to Return to Section)

Air Handler Sealed with Silicone Caulk (Click to Return to Section)
Sealed Vapor Retarder on Attic Ductwork (Click to Return to Section)

In-line Exhaust Fan Ventilation (Click to Return to Section)
APPENDIX B MANUFACTURED HOMES

MA 1.0—Introduction
The definition of a manufactured home is “a structure, transportable in one or more sections” and “is built on a permanent chassis and designed to be used as a dwelling with or without a permanent foundation when connected to the required utilities, and includes the plumbing, heating, air-conditioning, electrical systems contained therein” (source: Part 3280, Manufactured Home Construction and Safety Standards, Oct 1994). For purposes of this specification, the definition of manufactured homes will also include older homes manufactured in factories and hauled over the road to the home site, and regulated by U.S. Department of Housing and Urban Development (HUD).

MA 1.1—Verifying R-Values
If the existing R-value of the roof and floor cannot be verified, a default R-value may be used unless an actual value can be observed during weatherization work.

MA 1.2—General Requirements for Insulating Roofs
Requirements for insulating ceilings and roofs in manufactured homes are the same as for site-built homes. See section AT for requirements.

MV 1.3—Non-Heat-Recovery Ventilation—Intermittent or Continuous Operation
A bathroom exhaust fan that is controlled by both a manual switch, crank timer or dehumidistat in the bathroom to provide spot ventilation AND a time clock or programmable timer to provide whole-house ventilation when called for by the timer is an acceptable form of mechanical ventilation.

Surface-mounted fans shall have a sone rating of 1.5 or less, or other rating as approved by the contractor. Existing fans that meet the minimum airflow rates are exempt from the sone rating requirement. The fan shall have both automatic and manual controls. Automatic controls shall include a time clock or cycle timers with a minimum of 2 on-periods per day, a manual control switch to let the occupant turn the fan on or off for spot-ventilation purposes, and be set to operate determined based on the minimum ventilation level defined in Section 6.1
The ventilation fan shall be wired to both the manual spot-ventilation switch in the bathroom and to a time clock or timer.

For situations requiring continuous operation, fans shall be rated by the manufacturer to operate continuously and wired to a designated circuit or directly to the electrical panel.

MV 1.4—Balanced Flow Non-Heat Recovery Ventilation—Continuous Operation
Balanced flow non-heat-recovery air exchange units shall have fans capable of providing the intake and exhaust airflow determined in rates in Section 6.1, provide complete isolation of the intake and exhaust air, and have UL approval of all electrical components.

MV 1.5—Air-to-Air Heat Exchangers
Air-to-air heat exchangers shall provide the ventilation rates for minimum ventilation levels, as calculated in Section 6.1 and installed to manufacturer’s requirements.

MV 1.6—Other Mechanical Ventilation Systems
Other mechanical ventilation systems may be used if approved by RePower.

MV 1.7—Installation of Exhaust Fans
Exhaust fans shall be installed according to Section 6.2.

Illustration MA 1.2

MA 1.3—Blowing Underfloor Insulation
Preparation
Belly board or belly wrap shall be repaired to prevent insulation from falling from floor cavity. Repair materials shall be stitch-stapled to the belly board, or otherwise permanently affixed. Plumbing leaks and deteriorated material(s) shall be identified and reported to RePower and the owner. Deteriorated
material(s) shall be repaired prior to installing insulation. All repairs of this nature shall be between the
owner and the contractor and not under the responsibility of RePower.
Materials
Materials used to patch the belly board shall be breathable, durable and capable of supporting the insulation, and in strict accordance with prevailing local and state codes. Expanding foam or other sealants shall be used to seal accessible floor penetrations.

Installation
Underfloor cavities shall be insulated either by drilling small holes in the belly board or by drilling through the rim joists perpendicular to the floor joists. If holes are drilled through the belly board, they shall be patched. Holes drilled in the rim joists shall be patched with wooden plugs.

The entire floor cavity shall be packed with insulation in order to achieve an R-25 minimum, or the highest R-value practical.

MA 1.4—Ventilation
Crawlspaces shall be ventilated by openings in exterior foundation walls. Such openings shall have a net area of not less than one (1) sq. ft. for each 150 square feet of underfloor area. Where moisture due to climate and ground water conditions is not considered excessive, RePower may allow operable louvers and may allow the required net area of vent opening to be reduced to 1/300 or less (minimum 1/1500), provided the underfloor ground surface area is covered with an approved ground cover.
Openings shall be located as close to corners as practical and shall provide cross ventilation. The required area of such openings shall be approximately equally distributed along the length of at least two (2) opposite sides. Vents shall be covered with corrosion-resistant wire mesh, with mesh openings of no greater than ¼ inch in dimension. Existing vent openings that are covered with wire mesh do not need to be modified.

Contractors may approve mechanical ventilation when passive ventilating methods are not practical. If crawlspace ventilation cannot be accomplished in accordance with these requirements, underfloor insulation shall not be installed.

MA 1.5—Ground Covers
See Section 3.4.3.3

MA 1.6—Installing Batt-Type Insulation in Underfloor
See Section 3.4.3.2

Note: RePower does not provide incentives for the cost of removing or replacing an existing belly board. State or local code may require belly boards on manufactured homes.

MA 1.8—Duct Insulation, Duct Sealing and Air Sealing
See Sections 2.8 & 3.8
Illustration MA 1.8

Insulation protection recommended with 65 psi bursting strength and moisture-resistant.

Repair and seal cross-over ducting with methods similar to conventional ducting.

MA 1.9—Maximum Air Tightness
See Section 6.1.

MA 1.10—Mechanical Ventilation
Mechanical ventilation shall comply with Section 6.1 in this manual when duct sealing is installed in a mobile home. **Contractors shall submit to RePower an MVL notification letter to participants when the house falls below the MVL, even when an approved mechanical ventilation strategy exists.**
APPENDIX C: Spray-applied Polyurethane Foam

1.0 GENERAL

a. DESCRIPTION

1.1.1 Work Included

Building insulation required for this Work includes, but is not necessarily limited to:
1. Spray-applied polyurethane foam in wall, roof slope, and floors.
2. Spray-applied polyurethane foam in attic floors.
3. Spray-applied polyurethane foam at crawl space walls and rim joists.

Related work and materials described elsewhere:
1. Low-expansion foam sealants: Air Barrier Systems
2. Vapor barriers/slip sheets: Section 07200
3. Caulking Materials: Air Barrier Systems

1.1.2 SCOPE AND CONDITIONS OF THE WORK

1. Provide all labor, materials, accessories, services and equipment necessary to complete the work.
2. Comply with the Installation Requirements and all other Contract Documents.
3. Coordinate with other portions of the work and cooperate with other trades.
4. Design Intent – Air barrier: This material is part of the air barrier system of the building envelope of this building. It is to be installed so as to provide a continuous, structurally supported, plane of materials that contains the indoor air (reduce exfiltration) and to prevent outdoor air from entering the building (reduce infiltration).

b. SPECIAL REQUIREMENTS AND REGULATIONS

1. All materials, products and equipment shall be delivered, handled, stored, fabricated, assembled, installed and operated in accordance with the manufacturer's printed instructions.
2. Contractor or owner shall clear building areas to be foamed-in-place of debris and materials prior to the commencement of foam-in-place operations. Comply with all federal, state and municipal codes, laws and regulations for thermal insulation and vapor retarders.
3. See the “Applications” Section in the Air Barrier Systems Section of these Installation Requirements.

c. SUBMITTALS AND TESTS

1. Submit two (2) copies of manufacturer's product specifications, product data, and installation instructions. Include minimum and maximum ambient and substrate installation and curing temperatures for warm and cold weather conditions, including duration of minimum temperature requirements for the curing period.
2. Submit two (2) copies of manufacturer's MSDS sheet. Contractor to maintain a copy of this documentation at the job site at all times and shall provide copy upon request to the Owner, Project Inspector, or Code or OSHA authority.

3. Submit a copy of the Contractor’s written safety plan prior to commencing the work. This should include an air quality management plan specific to all materials included in the work.

4. Samples: Provide samples of each type of foamed-in-place polyurethane for the Inspector's approval.

5. Provide daily test shot samples of foamed-in-place polyurethane to the Architect from each batch of foam for the Inspector's approval.

6. Certified Testing: When required by the project documents, submit copies of certified test reports showing compliance with specified performance values.

7. Provide documented verification of the on-ratio monitoring for the duration of the project.

d. QUALITY ASSURANCE

1. When required by the contract documents, submit certified test reports from a "Blower Door" test performed by a technician approved by the Owner or Architect. The installer shall identify areas of leakage and undertake additional sealing if required to meet these performance specifications. Alternate methods allowed include infrared thermography (seasonal) and pressurized fog air leakage testing.

2. Inspection of the installation shall be made to verify the minimum foam thickness required to achieve the specified R-value.

3. The installer shall have a minimum of 3 years documented experience, demonstrating previously successful work of the type specified herein.

4. Perform industry-standard pull testing to assure substrate bond strength is adequate if the substrate has existing coatings or surface defects.

e. PROTECTION

1. Protection from deterioration: Protect installed insulation materials from physical damage and from becoming wet, soiled, or covered with ice or snow between phases of the work or after the completed installation. Do not expose to sunlight, except to the extent necessary for period of installation and concealment.

2. Protection of the premises from damage: Protect against ignition at all times.

3. Thermal protection of raw materials: Protect from freezing or extreme heat. Maintain chemical components at a minimum of 60 degrees while stored on site.

4. Fire protection: The code states that the use of completely exposed foamed plastic in interior applications presents a fire hazard unless the foam is protected by one of the code approved 15-minute fire resistive barriers (1/2" sheetrock or other approved finish or coating). Comply with all Code requirements for unoccupied areas (attics, crawl spaces, etc.) should also be followed. Comply with insurance ratings indicated in the Installation Requirements.

5. R316.6 Specific approval. Foamed plastic insulation not meeting the requirements of Sections R316.3 through R316.5 shall be specifically approved on the basis of one of the following approved tests: NFPA 286 with the acceptance criteria of Section R302.9.4, FM4880, UL 723, UL 1040 or UL 1715, or fire tests related to actual end-use configurations. The specific approval
shall be based on the actual end use configuration and shall be performed on the finished foam plastic assembly in the maximum thickness intended for use. Assemblies tested shall include seams, joints and other typical details used in the installation of the assembly and shall be tested in the manner intended for use.

6. Listed here are the spray foam insulations that currently do not require thermal barriers when installed and at the listed thicknesses and parameters laid out in Section R316.5.3 for attic spaces or Section R316.5.4 for crawl spaces.

7. Preferred Solutions, Inc. - One-Step.

8. Rigid board insulations that currently do not require thermal barriers are listed in 2.03 Other Materials.

9. Health and safety: Protect areas where ventilation is adequate with signage and require personnel in the unvented area to wear proper personal protection equipment. Follow the procedures in the OSHA-compliant safety plan, including all indoor air quality management plan protocols.

5. MATERIAL REQUIREMENTS

a. MANUFACTURER

Field-applied foamed-in-place polyurethane foam insulation shall be as supplied by a manufacturer with at least five years as a provider of this material. Examples include:

1. Certainteed Closed-Cell ESR-2669
2. FoamLok 2000, ESR-2629
3. Permax RT-2041 - Resin Technologies
4. Walltite - BASF
5. One-Step – Preferred Solutions, Inc.
6. Other approved equivalent foam products

b. BUILDING INSULATION

1.1.3 Spray-applied closed-cell rigid polyurethane foam (SPF)

1. Polyurethane foam product to be a two-component mix for producing high quality rigid insulation. All products shall be labeled with Model Building Code approvals and UL or FM listings where required.
3. Surface-burning characteristics: Maximum flame-spread and smoke developed indices of 75 and 450, respectively, based on tests performed on un-faced core by ASTM E-84 test method.
4. K-value: 0.15 minimum when aged 90 days at 140o F dry heat.
5. Only materials that have ECC Evaluation Reports will be used for air barrier and insulation. Submit manufacturer’s documentation.
6. Physical Properties:
 a. ASTM D1622 in-place density: 2.1 - 2.5 lbs. per cubic foot.
 b. ASTM D1621 Minimum compressive strength: 25 PSI.
 c. ASTM D1623 Minimum tensile strength: 30 PSI.
 d. ASTM D2126 Dimensional Stability at –20 degrees F: -.-5%
e. ASTM D2126 Dimensional Stability at 100 degrees F: +6%
f. ASTM D2842 or ASTM C272-76 Maximum water absorption: 3% by volume.
g. ASTM D2856 Closed-cell content: 90 percent minimum.
h. ASTM E96 Moisture Permeance (Insulation on sheathing): .53 perms
i. ASTM E283 Air Permeance: .004 cu ft/min/ft²
j. ASTM C518 Thermal Resistance: 6.0 BTU / sq. ft. hr. degrees F in 30 days minimum.
k. CAN/ULC-S708.1 Off-gassing: Passes

1.1.4 Open-cell semi-rigid, field-applied, Zero ODP, polyurethane foam

1. Foam product will be a polyurethane two-component mix for producing semi-rigid, self-adhered, open-cell insulation /sealant. Examples include: Icynene as manufactured by Icynene Corporation, Sealection 500 as manufactured by Demilec (USA) LLC.
2. Only materials that have ECC Evaluation Reports will be used for air barrier and insulation. Submit manufacturer’s documentation.
3. Physical Properties
 a. ASTM D1622 in-place density: .5 - .7 or 2.1 lbs. per cubic foot.
 b. ASTM D2126 Dimensional Stability at –20 degrees F: -.5%
 c. ASTM D2126 Dimensional Stability at 100 degrees F: +6%
 d. ASTM D2842 or ASTM C272-76 Maximum water absorption: 3% by volume.
 e. ASTM E96 Moisture Permeance (Insulation on sheathing): .53 perms
 f. ASTM E283 Air Permeance: .004 cu ft/min/ft²
 g. ASTM C518 Thermal Resistance (R-value): ________ BTU / sq. ft. hr. degrees F in 30 days
 (Specifier note: varies with product specified)
 h. CAN/ULC-S708.1 Off-gassing: Passes
4. Shall be labeled with Model Building Code approvals and UL listings.
5. Surface-burning characteristics: Maximum flame-spread and smoke developed indices of 75 and 450, respectively, based on tests performed on un-faced core by ASTM E84 test method

C. OTHER MATERIALS

1. Thermal and protect-from-ignition barriers materials and coatings. (See PROTECTION.)
2. Prescriptive thermal and PFPI barriers are always allowed. These include the following:
 a. 1 ½-inch-thick (38 mm) mineral fiber insulation;
 b. ¾-inch-thick (6.4 mm) wood structural panels;
 c. 3/8-inch (9.5 mm) particleboard;
 d. ¾-inch (6.4 mm) hardboard;
 e. 3/8-inch (9.5 mm) gypsum board; or
 f. Corrosion-resistant steel having a base metal thickness of 0.016 inch (0.406 mm).
3. In the case of non-prescriptive barriers, documentation from the fire protection product manufacturer must state in writing that the material meets the code requirements (cite the code reference) for use with field-applied polyurethane foam and the specific application in which the foam will be used.
4. Some newer SPF products do not require PFPI barriers in certain applications (attics, rim joists between floors, etc.) and at least one SPF product does not require a 15-minute thermal in any application. Ignition barrier is not required where the foamed plastic insulation has been
tested in accordance with Section R316.6. The use of these products is acceptable if the manufacturer’s documentation provides clearly stated evidence that the product meets the code, and cites the specific exception or compliance criteria that allow their product to meet the conformance requirements. This provision is subject to approval by the JHA.

5. Where required, a vapor retarder shall be installed to protect the framing and foam insulation from high humidity conditions. This material is to be a minimum of 6-mil polyethylene, liquid-applied coating designed for this use, or other material of equivalent vapor resistive performance, installed in a workmanlike manner.

6. INSTALLATION REQUIREMENTS

a. EXAMINATION

1. Prior to beginning work, examine all substrates and conditions for compliance with Installation Requirements to determine if conditions affecting performance of insulation are satisfactory. Do not proceed with installation until unsatisfactory conditions have been corrected in a manner acceptable to the installer and the Project Administrator.

2. Examine all substrates for soundness, such as tightness of connections, crumbling or looseness of surface, level tolerance of surface, and other conditions which would affect the installation. Notify the Project Administrator of any adverse or unsatisfactory conditions. Work shall not proceed until such conditions are corrected.

3. Verify that the substrate is dry and free of water, snow, or ice. Joints in insulation, sheathing, and other substrate components are to be solidly supported and fastened.

4. Beginning the installation implies acceptance of condition of substrate and of adjacent work.

b. PREPARATION

1. Clear building cavities to be sprayed-in-place of debris and materials prior to the commencement of the installation. Clean substrates of substances harmful to the insulation, including moisture, dirt, or un-bonded coatings which will effect the insulation or prevent an air-tight seal. Remove projections which might puncture vapor retarders.

2. Seal all joints and close off openings to in the sheathing to be sprayed to prevent foam leakage.

3. Check to ensure that the framed cavities are free of debris and that the surface to be sprayed is securely anchored to the framing members.

4. Wiring, conduit, boxes, etc. shall be braced or fastened securely so that expansion of foam sealant shall not cause wiring to "float." Wiring shall be located within the wall/ceiling cavity to be foamed, so as to prevent damage to wiring during the trimming and/or planing of the foam. Ensure that all electrical connections are made in a box, and that all boxes have covers securely screwed shut.

5. Clear all cracks, spaces, voids, and openings to be sealed of debris, moisture, ice, and materials prior to the commencement of foaming operations. Clean substrates of substances harmful to insulations, including moisture, dirt, or un-bonded coatings that will affect the insulation or prevent an airtight seal.

6. Mask areas to be protected from over-spray.
c. PROCESSING

1. Process a two-component polyurethane foam system with 1:1 ratio by volume, positive-displacement, industry-standard pumping equipment.
2. Monitor and maintain the component ratio and mix the components of the polyurethane chemicals in accordance with the manufacturer's product specifications and processing instructions to achieve the desired density and physical properties. Verify the product component ratio with flow meters and programmable ratio monitoring equipment that can prevent the installation of product that is off-ratio by more than the manufacturer's prescribed limits.
3. Maintain the component temperatures in accordance with the manufacturer's product specifications and processing instructions to achieve the desired mix, density, and physical properties.
4. Chemical components are to be maintained at a minimum of 60 degrees while stored on site.

d. INSTALLATION

1. Application of SPF shall be performed in strict accordance with the manufacturer's recommendations. Apply only when surfaces and environmental conditions are within limits prescribed by the manufacturer. The SPF insulation and transition sealants form the primary air barrier system for the structure walls. Continuity of the air/vapor barrier created by the spray-applied polyurethane foam insulation system shall be maintained at all intersections of the building assemblies (floor to foundations, walls to floors, walls to roofs, etc.), across expansion and control joints, and around elements penetrating through the building envelope (doors, windows, louvers, vents, etc.) by sealing as per the Air Sealing Installation Requirements.
2. Apply the insulation onto the substrate in to a minimum or average cured depth/thickness in consecutive passes of no more than the maximum lift thickness recommended by the manufacturer. Average thickness specifications will be to a plus-or-minus ½” tolerance. Areas determined to be less than this tolerance will be re-coated to the minimum and areas greater than this tolerance that extend beyond the framing will be trimmed to the maximum specified thickness.
3. The ambient and substrate temperatures at the time of application must be at or above the minimum required by the manufacturer before and during the foam installation. The manufacturer’s minimum cure temperature must be maintained for the required period after the foam has been installed.
4. Temporary space heating required during foaming operations shall be provided by vented or non-open flame sources.
5. The work shall be executed in accordance with the IAQ Management plan.
6. During foaming operations, the above temperature requirements must be met while providing two (2) air changes per hour for ventilation for installation personnel. OSHA-compliant personal protection equipment shall be utilized by the installers or as necessary to maintain an acceptable level of indoor air quality in accordance with the Indoor Air Quality Management plan.
7. Temporary heat provided during foaming operations shall be provided by vented or non-open flame sources.
8. Trim foam flush with the inside surfaces. Remove foam from finished surfaces such as window glass, casings, and gypsum board.

e. **SPECIAL REQUIREMENTS**

Non-metallic electrical wiring in the areas to be sprayed shall be Type NMB or NMC-B.

f. **CLEANING**

Clean work area daily by sweeping and disposing of debris and scraps in a location designated by the Owner. Upon completion of the work of this Section in any given area, remove tools, equipment, and all rubbish and debris from the work area; leave area in broom-clean condition.
APPENDIX D: Technical Bulletin

Subject: Dense-packing vs. Venting of Sloped Roofs
Sub-Category:
Date: 9/28/11 Lead Author(s): Bruce Harley

1.0 Topic

There is a perception of a disparity between code requirements for roof/attic venting, and a long-standing CSG approach to dense-packing sections of roof areas without venting. This bulletin provides guidance on how CSG programs should handle this disparity.

7. Background

For at least 15 years, insulation contractors working in CSG programs in Massachusetts have used dense-packed cellulose in sloped roof areas of cape-style houses, eyebrow roofs, mansard roof cavities, and the like. Although this practice is not explicitly allowed by building code, it has been commonly accepted by building officials and we have no evidence of roof sheathing or other failures in Massachusetts despite thousands of homes receiving this treatment. At least one major regional manufacturer (National Fiber) offers warranty service for assemblies – not just material, but all building components in contact with the insulation, including rafters, sheathing, and drywall – provided the material was installed at the required density.

A dense-pack approach is not optimal from a building science perspective. Best practice to avoid risk of moisture damage in unvented roof cavities is to include sprayed polyurethane foam (SPF) or other non-air permeable insulation in contact with the underside of the roof sheathing, or rigid foam on the outside of the sheathing (see Best Practice: Unvented Attics and the IRC below for further discussion on this approach). However, using SPF or rigid foam is cost-prohibitive for most retrofits; it is better suited to new construction, gut-rehab, or re-roof situations.

The code is clear that this approach is accepted for constructing unvented attics, but it is more ambiguous about the requirements for venting in sub-components of more complex attic systems. Further, it is clear that conventional methods (batt insulation, propavents, and continuous ridge and soffit vents) are insufficient to prevent roof sheathing or cavity condensation even in relatively mild climates, when air leaks exist. The combination of CSG’s extensive experience in climate zone 5, along with the details of the building code language, leave contractors working in CSG programs with some latitude regarding acceptable applications of insulation in a variety of situations. The following sections outline limitations on CSG’s acceptance of unvented dense-pack cellulose due to increased risk, and provide some analysis of the code language that suggests there is significant latitude for contractors and code officials in less risky situations.
8. **Limitations of Use**

As of this bulletin, CSG considers dense packed cellulose to be too risky to install in unvented roof assemblies under the following circumstances:

1. If there are any known roof or flashing leaks, or visible evidence of leaks, these must be fixed before a contractor considers dense-packing.
2. IECC climate zones 7 and 8 provide too much risk of winter condensation; climate zone 6 is questionable, though less risky.
3. If an entire attic, roof, or cathedral ceiling is to be insulated, it must be done in accordance with best practices for unvented attics, or continuous vent chutes must be installed along with conventional eave and ridge vents or equivalent.
4. If the length of the enclosed cavity to be dense packed exceeds eight (8) feet.

To be considered for dense-packed cellulose, at least the upper end of every cavity must be exposed to an open, fully vented attic. This is to allow the cavities to dry to the vented area; for example, an area of sloped roof with kneewall attic below and cap attic above as is typical in a Cape-style house may be considered a candidate for this treatment. The attic area used for net free vent calculation shall include the dense-packed cavity area added to the adjacent vented attic areas. In the case of low-slope roofs, dense pack applied along the eave edge shall not exceed 1/3 of the total attic area, and shall not be installed to block existing soffit vents. Other requirements include the following:

1. Cellulose shall be installed between any existing insulation and the roof sheathing (not between existing insulation and the plaster or drywall).
2. There must be a minimum space of 4" between the existing insulation and the roof sheathing to ensure adequate space for full dense pack.
3. The existing ceiling must be finished and in good shape, and able to support the weight of the cellulose: no cracks or gaps in the material, or materials that are too thin or improperly secured (such as wood paneling, homasote tiles, etc).

9. **Code Requirements**

The 2009 International Residential Code (IRC), section 806 addresses attic ventilation:

1. **806.1** “…attics and enclosed rafter spaces formed where ceilings are applied directly to the underside of roof rafters shall have cross ventilation for each separate space.”

 “Cross ventilation” is not defined anywhere in the IRC. It does not say the ventilation must be continuous for the length of the cavity, only that each “separate space” must be ventilated. “Cross ventilation” is also used for open attic areas and crawl spaces. One could infer that it simply requires that the air can move laterally. If every rafter space is exposed to the vented air, then each space could be considered to be cross-ventilated.

2. **806.2**: “The total net free ventilating area shall not be less than 1/150 of the area of the space ventilated except that reduction of the total area to 1/300 is permitted provided that at least 50 percent and not more than 80 percent of the required ventilating area is provided by ventilators located in the upper portion of the space to be ventilated at least 3 feet (914 mm).
above the eave or cornice vents with the balance of the required ventilation provided by eave or cornice vents. As an alternative, the net free cross-ventilation area may be reduced to 1/300 when a Class I or II vapor barrier is installed on the warm-in-winter side of the ceiling.”

This clearly says that IF there are both high and low vents, that the vent area may be reduced. That implies that as long as you provide a total area of 1/150, all the vents may be located high, all of them low, or any combination. If there isn’t at least a 3-foot height difference, 1/150 must be used. Although it would not be good practice, a sloped cathedral ceiling that is insulated traditionally with an air space and vent chutes would meet code if all the ventilation was at the ridge (none at the soffit), as long as the venting meets the 1/150 requirement. But if ALL of the ventilation is at the ridge, then what good do the vent chutes do anyway? The only “cross-ventilation” air flow would be laterally across the top of the cavities, with no flow from the bottom to top of each cavity.

3. **806.3**: “Where eave or cornice vents are installed, insulation shall not block the free flow of air. A minimum of a 1-inch (25 mm) space shall be provided between the insulation and the roof sheathing and at the location of the vent.” (emphasis added)

This section appears to aim at ensuring insulation does not block air flow at eave (soffit) or cornice vents. Even in the case of a cavity that is completely blind at the bottom (such as a 2- or 3-foot wide sloped roof at either end of a shed dormer), if there is no eave or cornice vent, then 806.3 does not appear to apply at all. Because it goes on to say “between the insulation and the roof sheathing and at the location of the vent”, it appears that if there is an eave vent, an air space is required, even if the insulated section in question is many feet away from the eave vent. But that language is inconsistent, and certainly could reasonably be interpreted as not required in any other cases. Again, although most contractors who build new homes or re-roof existing ones will automatically install soffit and ridge vents for any full vaulted ceiling, there is actually no language in the code to prohibit ridge-vent only (provided it meets the 1/150 area). Nor is there language that would prevent full contact of insulation against the roof sheathing, as long as there are no soffit vents. This would actually be a very bad idea for a full cathedral ceiling or flat roof, whether insulated with cellulose or fiberglass, but it would be difficult to argue that it violates code.

10. **Best Practice: Unvented Attics and the IRC**

Section 806.4 addresses an approach to constructing an unvented attic assembly. The approach requires sprayed foam or exterior rigid foam, and is indeed best practice for new, remodeled or retrofit construction in any climate. However, the code does not state that if a relatively small section of an otherwise properly vented attic has insulation in contact with the roof sheathing, that the insulation must be sprayed foam.

In the approach described in 806.4, the key parameter of the insulation is that it be “air-impermeable” – usually closed cell foam, or open cell foam with an added membrane or spray-on vapor retarder as
required by climate zone. The R-value of the foam must be sufficient to protect the inner surface of the foam from condensing temperatures.

Note: In the 2006 IRC, this was specified by a calculation based on the proportion of the sprayed foam R-value to the total of the foam plus any additional air-permeable insulation, and using assumed interior humidity conditions and monthly average outdoor temperatures. The calculation was replaced in the 2009 IRC with prescriptive R-values, based on climate zone, presumably for simplicity of use. However, these prescriptive values are based on the energy code minimum requirements for total roof/ceiling R-values. If they are used as part of a much higher total R-value, the minimum R-value requirements for the foam will be inadequate to protect against condensing.

As an alternate, the required R-value can be installed as rigid foam on top of the structural sheathing, warming the sheathing (now the first condensing surface) to the same level. These requirements and a series of additional pre-conditions are detailed in IRC section R806.4.

11. Summary

When possible, best practices for unvented attic assemblies should be considered as part of the work scope. However, due to prohibitive cost or practical limitations in many cases, dense packing enclosed rafter spaces can be an appropriate treatment if the limitations noted above are followed. As always, CSG should specify that work must be done in accordance with the code. But the final interpretation of code is always at the discretion of the local code official, and we believe that there is latitude in the code to support this approach, and that contractors should not be prohibited from doing so by program rules.
APPENDIX E: Health and Safety

Special Safety Considerations
Working in an attic space has certain inherent hazards. The following is a list of special safety concerns that workers should be aware of when working in an attic space.

Extreme Heat
During summer months and sunny conditions the temperature in the attic can climb as high as 150+ degrees. During these periods workers should limit their time in the attic to 15 minutes on and 15 minutes off. During off times workers should be sure to drink plenty of fluids and be assessed for signs of heat related illnesses.

Hazardous Materials
Asbestos, molds, and animal feces are all possible materials found in an attic.

Electric Shock Hazard
Exposed wires, uncovered boxes, perspiration caused by extreme heat and exertion can combine to create a dangerous situation. Adequate lighting should be provided and care should be taken to avoid potential dangerous situations.

Falling Hazard
1. Poor light conditions and attic level changes or loose debris can result in falling in the attic. Adequate lighting should be provided and care should be taken when moving about the attic.
2. Fall protection for open-joist attic work.

Recessed Lights
(IC vs. un-rated fixtures – See Section 1 - Recessed Lights).

Confined Spaces
Some attics may have low head room or severely limited access. Follow OSHA safety regulations when attic spaces qualify as confined spaces.
APPENDIX F: Mercury Spill Cleanup Procedure

1.0 CLEANING UP SPILLS OR BROKEN EQUIPMENT/BULBS

a. What Never to Do After a Mercury Spill

1. Never use a broom to clean up mercury. It will break the mercury into smaller droplets and spread them.
2. Never use household cleaning products to clean the spill, particularly products that contain ammonia or chlorine. These chemicals will react violently with mercury, releasing a toxic gas.
3. Never pour mercury down a drain. It may lodge in the plumbing and cause future problems during plumbing repairs. If discharged, it can cause pollution of the septic tank or sewage treatment plant.
4. Never wash clothing or other items that have come in direct contact with mercury in a washing machine, because mercury may contaminate the machine and/or pollute sewage. Clothing that has come into direct contact with mercury should be discarded. By "direct contact," we mean that mercury was (or has been) spilled directly on the clothing, for example, if you break a mercury thermometer and some of elemental mercury beads came in contact with your clothing. Change as soon as possible into other clothing (even a tyvek suit will do) and place your clothing into a mercury disposal bag or contractor trash bag and seal with duct tape. Bring into your facility and place in disposal container for appropriate disposal.
5. Never walk around if your shoes might be contaminated with mercury. Contaminated clothing can also spread mercury around.

b. Personal Protective Equipment for Mercury Spills

Remove all metal jewelry – mercury will react with most metals and jewelry will not be able to be adequately cleaned if contaminated.
Always handle mercury with the utmost care. Gloves are a necessity. Polyethelene and nitrile gloves are appropriate for keeping mercury away from your skin. If you use them when cleaning up a CFL bulb or Thermostat dispose of them as waste and please see your supervisor for replacements for your kit. Do not use other types of gloves.
Wear chemical safety goggles or the safety glasses in the mercury clean-up kit. In case of eye contact, flush your eyes with water for a full 15 minutes. Seek medical attention immediately.
Whenever there is a potential mercury contamination shoe covers should be disposed of with mercury contaminated waste and clean-up materials.

c. Mercury Clean Up Kits

Installers are required to have mercury spill clean-up kits for use in the event of a broken CFL bulb. They may assemble their own kit as based on EPA guidelines at http://www.epa.gov/hg/spills/. An example of a moderately priced kit is:

LAB SAFETY SUPPLY® Portable Mercury Spill Kit (Item #:23945)
The kit contains mercury (Hg Absorb) sponges to amalgamate small droplets of mercury. To use, dampen the sponges with water, and then wipe the area contaminated with mercury. Do this slowly to allow for complete absorption of all free mercury. The mercury droplets will be absorbed by the chemical layer (Hg absorb powder) on the sponge forming a silvery surface. The capacity of the sponges can be increased with a small amount of Hg absorb powder rubbed into the surface of the wet sponge, along with a few small droplets of mercury. The effectiveness of the sponge is actually increased by the absorption of mercury. Follow specific directions below.

d. Cleanup and Disposal Overview

The most important steps to reduce exposure to mercury vapor from a broken bulb are:

1. **Before cleanup**
 a. Have people and pets leave the room.
 b. Air out the room for 5-10 minutes by opening a window or door to the outdoor environment.
 c. Shut off the central forced air heating/air conditioning system.

2. **Collect materials needed to clean up broken bulb.**
 a. Mercury Clean-up Kit
 b. Stiff paper or cardboard
 c. Sticky tape (e.g., duct tape/metal tape)
 d. Damp paper towels or disposable wet wipes (for hard surfaces)
 e. Flash light

1.1.1 Cleanup Steps for Hard Surfaces

1. Carefully scoop up glass fragments and powder using stiff paper or cardboard and place debris and paper/cardboard in a glass jar with a metal lid. Use a mercury disposal bag or glass jar.
2. Use sticky tape, such as duct tape, to pick up any remaining small glass fragments and powder. Place the used tape in the mercury disposal bag or glass jar.
3. Wipe the area clean with damp paper towels or disposable wet wipes. Place the towels in mercury disposal bag or glass jar.
4. Vacuuming of hard surfaces during cleanup is not recommended unless broken glass remains after all other cleanup steps have been taken. [NOTE: It is possible that vacuuming could spread mercury-containing powder or mercury vapor, although available information on this problem is limited.] If vacuuming is needed to ensure removal of all broken glass, keep the following tips in mind:
 a. Keep a window or door to the outdoors open;
 b. Vacuum the area where the bulb was broken using the vacuum hose, if available; and
 c. Remove the vacuum bag (or empty and wipe the canister with a damp paper towel) and seal the bag/vacuum debris, and any materials used to clean the vacuum, in mercury disposal bag or glass jar.
5. Seal mercury disposal bag containing all cleanup materials.
6. Place sealed bag inside of second disposal bag. Remove and place gloves, and shoe covers into the outer bag. Close outer bag seal tightly.
7. Place “Warning Mercury Inside – Do Not Open” Sticker to cover over bag seal opening.
8. Promptly remove all bulb debris and cleanup materials from customer’s residence and into your vehicle (trunk is best)
9. Wash your hands with soap and water after disposing of the jars or plastic bags containing bulb debris and cleanup materials.
10. Inform customer they should continue to air out the room where the bulb was broken and leave the H&AC system shut off, as practical, for several hours.

1.1.2 Cleanup Steps for Carpeting or Rugs

1. Carefully scoop up glass fragments and powder using stiff paper or cardboard and place debris and paper/cardboard in mercury disposal bag or glass jar.
2. Use sticky tape, such as duct tape, to pick up any remaining small glass fragments and powder. Place the used tape in the glass jar or plastic bag.
3. Vacuuming of carpeting or rugs during cleanup is not recommended unless broken glass remains after all other cleanup steps have been taken. [NOTE: It is possible that vacuuming could spread mercury-containing powder or mercury vapor, although available information on this problem is limited.] If vacuuming is needed to ensure removal of all broken glass, keep the following tips in mind:
 a. Keep a window or door to the outdoors open;
 b. Vacuum the area where the bulb was broken using the vacuum hose, if available; and
 c. Remove the vacuum bag (or empty and wipe the canister with a damp paper towel) and seal the bag/vacuum debris, and any materials used to clean the vacuum, in mercury disposal bag or glass jar
4. Seal mercury disposal bag containing all cleanup materials.
5. Place sealed bag inside of second disposal bag. Remove and place gloves, and shoe covers into the outer bag. Close outer bag seal tightly.
6. Place “Warning Mercury Inside – Do Not Open” Sticker to cover over bag seal opening.
7. Promptly remove all bulb debris and cleanup materials from customer’s residence and into your vehicle (trunk is best)
8. Wash your hands with soap and water after disposing of the jars or plastic bags containing bulb debris and cleanup materials.
9. Inform customer they should continue to air out the room where the bulb was broken and leave the H&AC system shut off, as practical, for several hours.

1.1.3 Future Cleaning of Carpeting or Rugs

1. Air-Out the Room During and After Vacuuming
2. Instruct resident that for next several times they vacuum the rug or carpet, they should shut off the H&AC system, close the doors to other rooms, and open a window or door to the outside before vacuuming. Change the vacuum bag after each use in this area.
3. After vacuuming is completed, keep the H&AC system shut off and the window or door to the outside open, as practical, for several hours.

1.1.4 After Cleanup

1. The installer shall bring the materials (in a sealed bag or container) to an appropriate facility to be properly recycled.
2. Actions You Can Take to Prevent Broken Compact Fluorescent Light Bulbs
3. Fluorescent bulbs are made of glass and can break if dropped or roughly handled. To avoid breaking a bulb, follow these general practices:
4. Always switch off and allow a working CFL bulb to cool before handling. If there is not enough time to do so, gloves may be used to protect the hands; however, greater caution must be exercised as the gloves will compromise grip.
5. Always handle CFL bulbs carefully to avoid breakage.
6. If possible, screw/unscrew the CFL by holding the plastic or ceramic base, not the glass tubing.
7. Gently screw in the CFL until snug. Do not over tighten.
8. Never forcefully twist the glass tubing.

APPENDIX G: Glossary

10% of conditioned floor area—Used to calculate the effectiveness of a duct sealing installation. A duct system is considered to be well-sealed if the measured CFM50 leakage is less than 10% of the conditioned floor area.

Air sealing target areas—Locations of high importance for effective air sealing, including: attic and basement hatches, plumbing and electrical penetrations, large gaps in walls or exterior surfaces, window and door framing.

Air barrier—Interior (conditioned) space to exterior (unconditioned) space should be separated by a continuous and complete barrier to air movement, with any penetrations sealed as well as possible.

Baffles—Rigid material used to contain loose-fill insulation.

Building cavity duct—Any enclosed cavity used for a forced-air duct system. This includes joists where sheet metal forms a pan across the joists.

Combustion appliance — Any appliance that burns fuel.

Combustion Appliance Zone (CAZ)—A conditioned space or enclosed area that contains a combustion appliance for the purpose of space heating or water heating.

Complete measure—An installation of a RePower incentivized measure that meets all specifications in the RePower Weatherization Specifications Manual and which meets the minimum requirements at all reasonably accessible locations. For example, attic insulation must be R-38 over the entire surface adjacent to conditioned space and ducts must be sealed at every joint and seam.

Conditioned space—Enclosed areas that directly receive space conditioning, meaning that they contain HVAC vents, electric resistance heaters or wood stoves. Alternatively, spaces that are not directly conditioned but are largely connected to conditioned space and have an effective barrier from the outside shall be considered conditioned. Garages are usually considered unconditioned space, unless there is a vent feeding conditioned air to the area.

Crown attic—Uppermost attic flat, adjacent to a sloped cavity, that is commonly seen in 1.5 story homes.

Cubic Feet per Minute (CFM)—Rate of flow for air movement between defined areas.

Denim insulation—A non-fibrous insulating material that does not require a vapor permeable air barrier in human contact areas.
Encapsulated batts—Unfaced fiberglass batts with a perforated vinyl cover (can serve as a vapor permeable air barrier in human contact/storage areas). Acceptable for installations.

Enclosed cavity—Space bordered on all sides by rigid material.

Exterior attic access—Entry into unconditioned attic space that connects directly to other unconditioned areas, including garages and outside.

Exhaust device—A mechanical unit intended to remove indoor air pollutants, including bathroom exhaust fans, dryers and mechanical ventilation devices.

Faced batt-type insulation—Faced batts have an air and/or vapor barrier on one side, usually craft paper. The facing shall always be placed adjacent to the warm surface being insulated, and shall not be sandwiched between insulation or installed so that it creates a condensing surface on the cold side of the insulation.

Flex duct—Flexible plastic sheeting over a metal wire coil.

Ground cover—6-millimeter or thicker, black polyethylene used to exclude water vapors emanating from soil in unfinished crawlspace or basements.

Human contact area—Location where occupants go for routine maintenance or storage.

IC vs Non-IC rated light fixtures—Insulation contact-rated fixtures do not need to be baffled to prevent insulation from contact. Insulation may be piled directly on top of fixture. Non-IC rated fixtures must be baffled to prevent heat build up.

Interior attic access—Entry into unconditioned attic space that connects directly to a conditioned area.

Knee wall—A short wall between an attic floor and a sloping roof, and which separates a conditioned and an unconditioned space.

Minimum Ventilation Level (MVL)—Lower limit of natural ventilation due to leakiness of a structure, below which mechanical ventilation must be installed.

Net free area—The net area of unencumbered venting, meaning the total area of the vent minus the area blocked by screens or louvers.

Open wall(s)—Any vertical barrier between conditioned and unconditioned space where the framing is visible from any side.

Passive ventilation—Natural ventilation of a space caused by wind or temperature-driven convection. Does not include moving parts such as fans.
Pony wall—For the purposes of the RePower Weatherization Manual: Any vertical barrier between conditioned and unconditioned space that is less than full wall height. For example, the wall between a skylight and the open attic space.

Post and beam—Floor construction using a support system of beams typically spaced 30-48” OC. Requires 12-inch spacing for any support material (see UN 2.2 for spacing/spans).

Register—A ventilation grill that separates HVAC ducting from conditioned space.

Rake—Horizontal section of side attic.

Return—Duct that brings conditioned air from the house to air handler.

Rim or band joist—Area of a home where the concrete foundation meets the floor joists.

Side attics—Unfinished areas located on the same floor as and adjacent to finished spaces. May be considered conditioned or unconditioned depending on certain criteria.

Skylight—Any window unit in an opening in the roof assembly and which is installed at a slope of 15 degrees from vertical or greater.

Sloped ceilings—Ceilings of conditioned space that are angled, including vaults. These may follow the roof line or simply intrude into the attic space above, and may require special consideration when installing insulation.

Spray foam insulation—A foam plastic material that is applied with a foaming agent for use as insulation.

Supply—Delivers conditioned air from the air handler into the home.

Thermal envelope—The plane where thermal and air barriers exist to reduce heat transmittance and air leakage. The thermal envelope should be continuous in order to maximize effectiveness.

Thermal barrier—An assembly or material that is installed to prevent heat from conducting between conditioned and unconditioned spaces.

Unconditioned space—Space within a building that is not heated or cooled by an active system or directly linked to conditioned space; outside.

Unfaced batt-type insulation—Batt-type insulation with no vapor or air barrier attached.

Upper attics—Unfinished areas located above finished spaces. Upper attics are usually considered unconditioned space except in rare cases.
Vapor permeable air barrier—Any material that substantively blocks air from passing, including house wraps, but which allows water vapor (which may pass through narrower pores than air) to pass through.

Vapor barrier—A material that restricts the movement of water vapor from an area of high vapor pressure to one of lower pressure. Material with a perm rating of 1.0 or less is normally considered a vapor barrier.